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HARRY GANZEBOOM’S GUIDE TO READING SPSS REGRESSION 
TABLES 
 
This version: February 5 2009. Revised: October 28 2013. 
 
Syntax 
 
Regr /dep=Y /enter=X1 X2 /enter=X3. 
 
This spss statement generates a stepwise series of regression models, in which you 
can enter ever more X-variables. You determine the (forward) steps by the /enter 
statements. The output is repeated for each model separately. 
 
By default, there is listwise deletion of missing values and your results are evaluated 
by the largest possible N among the X-vars (which may be very small). You can use 
/missing=pairwise to learn more about occurrence and influence of missing 
values. 
 
Other useful options and statistics: 
  /des=uni corr n  
  /stat=tol collin change default. 
 
Coefficients 
 
 Start at the lower left corner of the Unstandardized Coefficients B. This is the 

regression model itself. 
 First interpret the intercept (Constant): this is the expected value of the dependent 

variable Y for cases that are 0 on each of the independent variables X. When this 
(X1=X2=…=0) never happens in your data, the intercept is an extrapolation and 
often not of substantive interest. If you want to make sure this does not happen, 
recode all your X-variables in such a way that 0 occurs as a value I each of them. 

 Then interpret the other B’s. They show the expected change of Y, when the 
respective X changes 1 unit.  

o The interpretation of B’s is partial: the expected change of Y for 1 unit 
of X holds when all the other X-variables in the model are 
(statistically) controlled (=kept constant). 

o B’s can only be interpreted relative to one another if the units of the 
respected X-variables can be compared to one another. Example: B’s 
of age and sex are not comparable, B’s of father’s education and 
mother’s education may be comparable. 

o If you do not like the scale of numbers that you see, because they have 
too many or too few decimals, consider changing the unit of 
measurement, so that 1 unit becomes interpretable. For example, 
consider changing the scale of X to a 0..1 range: the B then expresses 
the change of Y over the entire range of X. This does not change the 
contents of the model. 

 Move to the column “Standardized Coefficients” with the beta’s. Like the B’s, the 
beta’s tell you how much change of Y occurs for 1 unit of X, but this time the 
variables (both X’s and Y) are Z-standardized. So, a beta tells you how many units 
standard deviation of Y you get for 1 standard deviation of X 
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o Beta’s are in the metric of correlations: between –1 and +1, with 0 as a 
neutral point (=no effect). 

o In simple regression, the beta is equal to the correlation between X and 
Y. 

o Beta’s can be compared to one another, they allow conclusions like: 
“age is more important than sex in determining Y”. 

o Standardized equations have an implicit intercept, 0. When all the X-
variables are 0 (i.e. for a case with mean values on all the X-variables), 
the expected value of Y would be its mean, being 0 for a standardized 
Y-variable. 

o Standardized effects have a similar purpose as ‘effect sizes’ in 
experimental designs. They tell you how strong effects are on 
‘absolute’ scale and how they compare in strength to one another. 

 Standard errors (SE) of the B’s: Standard errors (or ‘sampling errors’) give an 
estimate of how the B’s would vary if we were to draw many samples of size N. 
The SE’s are the standard deviations of the sampling distributions of the B’s. 

o SE’s are in the unit of X: if you change the unit of X, the SE’s change 
in the same way. 

o Using SE’s you can construct confidence intervals. 
o SE’s become larger (as do confidence intervals) 

 When N is smaller 
 When there are more X-variables in the model; however, they 

may become smaller if these X-variables are strong predictors 
of Y. 

 When these X-variables are stronger correlated. 
o When X-variables are extremely correlated (and there is low N), SE’s 

can become very large. This condition is referred to as 
(multi)collinearity.  

 t-values and Sig.: t = B/SE. This value should be compared to the t-distribution 
that you find in any statistics book to find the associated probability. Fortunately, 
you do not have to do it all the time, because SPSS does this for you. Its prints the 
P that is associated with the t and calls it Sig. 

o Even if it says Sig. = .000, the value is not exactly zero, it is just very 
small. 

o The Sig. column would be more appropriately labeled P. 
o P is the probability that a t-value of this size or more extreme would be 

observed in a (simple random) sample of size N if the H0 is true in the 
population. 

o P-values are two-tailed: if you have a strong expectation about the 
location of Ha, you can use a one-tailed probability: divide P by 2. 

o We conclude that a B is statistically significant at the .05 significance 
level, if P < .05 (and t > 1.96).   

o The choice of the significance level is yours, and customarily made at 
.05 (1/20). 

o If you choose a .05 significance level, it means that you decide to 
reject the null hypothesis incorrectly in 5% of all tests you do. This is 
called the Type I error. 

o Note that SPSS always assumes H0=0. This is often a sensible choice 
for the B’s, but often not for the intercept. 
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ANOVA table 
 
 The Sum of Squares SS have the following interpretation 

o SS total is the variation of the Y’s around their mean. 
o SS residual is the variation of Y’s around the regression line/plane. 
o SS regression is the sum of squared deviations between the regression 

plane (expected values) and the mean Y. 
o SS total = SS regression + SS residual 
o If you add more X-variables to the model, SS-regression will increase, 

SS residual will decrease. 
 The degrees of freedom have the following interpretation: 

o DF total = N –1 
o DF regression = number of X-variables  
o DF residual: DF total – DF regression 

 Mean squares: SS / DF. 
o Note there is no MS total printed. It would be the same as the variance 

of Y. 
o F = MS regression / MS residual. This F-value tests whether there is 

any predictive power in the X-variables as a whole. The F-test is 
somewhat superfluous because it is almost always statistically 
significant, and it is always significant when at least some of the t-tests 
for the B-coefficients are statistically significant. 

o However, F-tests can be useful when there is multi-collinearity, or 
when comparing different models. 

o The F-test refers to F-distributions as found in most statistics books, 
with DF regression and DF residual as coordinates. Fortunately, you do 
not have to do this all the time, because SPSS prints the associated P-
value. 

o In simple regression (one predictor), the F-test is equivalent to the t-
test for the B. In this case (DF regression = 1), the F is the square of 
the t, and has a critical value of 3.84 = 1.96*1.96. 

 
Model summary 
 
 The R-square gives the proportion explained variance: R2 = SS regression / SS 

total. This is the most commonly used measure of fit of the model. 
o The adjusted R-square corrects the R-square for the fact that adding 

any (even nonsensical) X-variables to the model would increase the SS 
regression. If you add a nonsensical variable to the model, the expected 
increase of SS regression is MS residual. Adjusted R square is 
therefore defined as: (SS regression – (DF reg*MS regr)) / SS total. 

 In other, related models (‘analysis of variance’) SS regression is often referred to 
as SS model. SS residual is often also called the SS error. 

 Finally, the Standard Error of the Estimate: 
o Is not a standard error and not related the sampling distribution. 
o It is the standard deviation of the residuals and also a measure of fit: 

small values mean that all Y’s are close to the regression line / plane. 
o A more appropriate name is: Root Mean Square Residual or the Root 

Mean Square Error (RMSE). 
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o Standard Error of the Estimate is thus the root of the Mean Squared 
Error. 

 
Finally 
 
 All inferential statistics (but not the regression model itself) assume: (A) simple 

random sampling, (B) normally distributed residuals, (C) homogeneously 
distributed residuals. If this is not true, do take the numbers for SE, t and P with a 
grain of salt. 

 It really helps to look at descriptives (frequencies) of all X and Y variables before 
starting interpretation. Not only the mean and standard deviations are important, 
but also minimum and maximum. 

 
Regression and causal analysis 
 
Regression analysis is used for causal analysis, but is not identical to causal analysis. 
Regression analysis owes its special role in causal analysis by its capacity to control 
(‘keep constant’) multiple variables, with sometimes even a very large number of 
controls. The causal interpretation depends upon assumptions that have to be satisfied 
outside regression analysis: 
 
 X can be a cause of Y, not the other way around (no reverse causation) 
 X-variables should be distinguished in confounders and intervening variables 

(=mediators). To examine a causal effect of X1 of Y, you need to control all 
confounding other X-variables, but not the mediators. Only if your aim is to 
examine mediation (=indirect effects), you need to control mediators. 

 Evidence of causality is when an effect of X1 on Y remains after controlling 
confounders. 

 
It is often useful to do your regression analysis in forward steps, in which variables 
are entered (or removed) in groups. The most commonly used logic of analysis is: 
1. Model with only a bivariate effect of X1. 
2. Control confounders 
3. Control mediators. 
Note that the third step is only useful when you are answering a mediation problem. 
 
Regression analysis and analysis of variance 
 
For experimental designs one often uses analysis of variance (ANOVA), and if there 
are multiple dependent variables MANOVA. While there are special programs to 
conduct anova, it is in fact identical with linear regression (and spss’s UNIANOVA is 
also useful to do regression analysis). Experimental designs most often concentrate on 
two uncorrelated discrete (often dichotomous) X-variables and the question of interest 
is about the interaction effect (what is the effect of the combination of X1 and X2 on 
Y?). In a properly designed experiment there are no questions about controls, 
confounders, mediators or even effect sizes (=standardized effects).  
 
Some more complicated experimental designs (such as pretest/posttest designs, 
manipulation checks, or quasi-experimental designs) resemble observation data more 
strongly. Here stepwise regression is often useful. 


