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SERIES EDITOR’S INTRODUCTION

Over the past three decades, logit type models have become the most
popular statistical methods in the social sciences. In response to the need
for understanding such models and showing how to correctly use them in
various contexts, the Sage QASS (Quantitative Applications in the Social
Sciences) series has given considerable attention to their exposition: The
coverage includes No. 45 in the series, Linear Probability, Logit, and Probit
Models, by Aldrich and Nelson; No. 86, Logit Modeling, by DeMaris;
No. 101, Interpreting Probability Models: Logit, Probit, and Other
Generalized Linear Models, by Liao; No. 106, Applied Logistic Regression,
by Menard; No. 132, Logistic Regression: A Primer, by Pampel; No. 134,
Generalized Linear Models: A Unified Approach, by Gill; No. 135,
Interaction Effects in Logistic Regression, by Jaccard; and No. 138, Logit
and Probit: Ordered dnd Multinomial Models, by Borooah. Why did my
predecessor, Michael Lewis-Beck, who reviewed the prospectus and earlier
drafts, put in the good work of editing another book on logit models for the
series?

Since Rensis Likert’s 1932 publication of A Technique for the
Measurement of Attitudes, surveying human attitudes has never been the
same. Indeed, any social surveys today will include the Likert-type scale as
a staple means for asking questions. A typical Likert-type scale has five cat-
egories (e.g., strongly disagree, disagree, undecided, agree, strongly agree)
to gauge one’s response fo a question, though it may have anywhere
between three and seven or more response categories. If we code the five
categories 1 to 5, we could estimate a linear regression model of a Likert-
type scale, and that was the choice of method in the early days for analyz-
ing such data. There are, however, some obvious problems. First and
foremost, classical linear regression assumes a continuous dependent vari-
able with equally spaced, ordered response categories. A Likert-type scale,
or any other ordinal scale, is, albeit ordered, not necessarily equally spaced
between categories. Second, and perhaps more important, such a scale
would not give the normal distribution that the classical linear regression
assumes the data to display.

To analyze ordinal data of this nature, there are other methods available,
most often in the form of contingency tables and log-linear models. The
Sage QASS series has also given attention to the topic, with the titles
related to the topic including: No. 8, Analysis of Ordinal Data, by
Hildebrand, Laing, and Rosenthal; No. 20, Log-Linear Models, by Knoke



and Burke; No. 94, Loglinear Models With Latent Variables, by Hagenaars;
No. 97, Ordinal Log-Linear Models, by Ishii-Kuntz; and No. 119, Odds
Ratios in the Analysis of Contingency Tables, by Rudas. However, these
methods are not in the regression framework, which is the most widely
known and applied quantitative method in the social sciences.

Ann A. O’Connell’s book fills the void. Even though Nos. 86, 101, and
138 in the series also treat ordered response variable in a logit model, the
current book focuses entirely on such logit models by presenting three
forms of the dependent variables that capture the ordinal nature of the
response. The book begins by presenting an empirical example from the
Early Childhood Longitudinal Study, for which the main dependent vari-
able, although not a Likert scale, is nevertheless ordinal and measures pro-
ficiency in early literacy and numeracy. The author then reviews the logistic
regression before presenting the core of the book in three topical chapters
on the cumulative or proportional odds model, the continuation ratio model,
and the adjacent categories model. Along the way, SAS® and SPSS® exam-
ples are given. Although the proportional odds model is perhaps the more
widely applied of the three, the reader will appreciate the alternatives and
especially the tips on when to use which, given in the concluding chapter.

~—Tim Futing Liao
Series Editor
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LOGISTIC REGRESSION
MODELS FOR ORDINAL
RESPONSE VARIABLES

Ann A. O’Connell
University of Connecticut

1. INTRODUCTION

For many response variables in education and the social sciences, ordinal
scales provide a simple and convenient way to distinguish between possi-
ble outcomes that can best be considered as rank-ordered. The primary
characteristic of ordinal data is that the numbers assigned to successive
categories of the variable being measured represent differences in magni-
tude, or a “greater than” or “less than” quality (Stevens, 1946, 1951). Some
examples of ordinal data include rubrics for scaling open-ended writing
responses or essays and the solutions to arithmetic problems for which
responses are scored based on improving levels of quality (e.g., 0 = poor,

= acceptable, 2 = excellent). In contrast, nominal-level data occur when
the numeric values used to measure a variable simply identify distinct qual-
itative differences between categories (i.e., gender as 1 = male or 2 =
female; geographic description of school attended as 1 = rural, 2 = urban,
3 = suburban, etc.); nominal data do not possess the directional character-
istics of ordinal data. On the other hand, variables measured on an interval-
level or ratio-level scale do use scale values to indicate the “greater than”
or “less than” quality of ordinal variables but in addition maintain a prop-
erty of equal-distance or equal-interval length between adjacent values
across the scale. Temperature measured on the Celsius scale is a familiar
example of an interval-level variable. However, interval-level variables
have an arbitrary rather than an absolute zero-point. Variables that possess
all the properties of interval scales but that also have a genuine zero-point
are referred to as ratio-level; reaction time to a task, weight, and distance
are familiar ratio-level variables.!

Ordinal categories are common in research situations where the assign-
~ ment of numbers representing successive categories of an attribute, con-
truct, or behavior coincides with meaningful directional differences.
~ Knapp (1999) used ordinal ratings to assess severity of illness with scale



categories such as mild (1), moderate (2), and severe (3). In Knapp’s
research, the numbers ascribed to the severity of illness categories represent
increasing severity, in the sense that “moderate” is more critical than
“mild,” and “severe” is more critical than “moderate.” The numerical rating
given to the “severe” case does not imply that “severe” is three times as crit-
ical than “mild,” only that the severity of illness in the “severe” category is
greater than the severity of illness for those in the “mild” category, and
greater still than those in the “moderate” category. ’

The choice of numbers used to represent the progressively more severe
categories conveniently preserves the “greater than” or “less than” quality of
the underlying attribute defining the categories themselves. The numbers
model the attribute under study, such as severity of illness, and are chosen to
preserve the transitivity of the categories: If the value of 3 represents a state
that is more critical than the state represented by the value 2, and the value
2 represents a state more critical than the condition represented by the value
1, then the property of transitivity implies that the condition represented by
the value of 3 is also more critical than the condition represented by the
value of 1 (CLff & Keats, 2003; Krantz, Luce, Suppes, & Tversky, 1971).

The measurement of variables on an ordinal scale is familiar. Ordinal
scales have been used to categorize subjective probability or likelihood judg-
ments in counseling and psychotherapy research (e.g., ratings from 1 = very
unlikely to 5 = very likely) (Ness, 1995). A client’s clinical condition after
therapy can be characterized as deteriorated (1), unchanged (2), or improved
(3) (Grissom, 1994). Health researchers frequently use five successive levels
to characterize “stages of change” in health-related behavior such as smok-
ing cessation, use of condoms, exercise behavior, and weight loss efforts
(Hedeker & Mermelstein, 1998; Plotnikoff, Blanchard, Hotz, & Rhodes,
2001; Prochaska & DiClemente, 1983, 1986; Prochaska, DiClemente, &
Norcross, 1992). In the stages-of-change model, disposition or activity
toward behavior change typically is measured as precontemplation (1), con-
templation (2), preparation (3), action (4), and maintenance (5). The experi-
ence of teachers’ stages of concern for implementation of educational
innovations in their classrooms has also been measured through an ordinal
scale, one representing change in focus of concern from self = 1 to other = 7
(Hall & Hord, 1984; van den Berg, Sleegers, Geijsel, & Vandenberghe,
2000). In early-childhood education, indicators of mastery for the hierarchy
of early literacy skills leading toward literacy proficiency in young children
can be characterized as ordinal in nature: phonemic awareness (1), phonics
(2), fluency (3), vocabulary (4), and text comprehension (5) (Center for the
Improvement of Early Reading Achievement [CIERA], 2001).

Although ordinal outcomes can be simple and meaningful, their optimal
statistical treatment remains challenging to many applied researchers (CLiff,

1996a; Clogg & Shihadeh, 1994; Ishii-Kuntz, 1994). Historically, researchers
have relied on two very different approaches for the analysis of ordinal out-
comes. Some researchers choose to apply parametric models for ordinal
outcomes, such as through multiple linear regression with the outcome
treated as at least an interval-level variable, assuming that the robustness of
these techniques overcomes any potential interpretation problems. Other
researchers choose to treat the ordinal variable as strictly categorical and apply
log-linear or nonparametric approaches to understand the data. Although both
strategies may be informative, depending on the research question, nelthe.r of
these approaches is optimal for developing explanatory models of ordinal
outcomes (Agresti, 1989; Cliff, 1996a; Clogg & Shihadeh, 1994; O’Connell,
2000), particularly when the focus of analysis is on the distinction between
the ordinal scores.

S

Purpose of This Book

The purpose of this book is to familiarize applied researchers, particularly
those within the fields of education and social and behavioral science,
with alternatives for the analysis of ordinal response variables that are
faithful to the actual level of measure of the outcome. The methods I dis-
cuss are examples of ordinal regression models, and they are extensions
to logistic models for binary response data. Logistic regression methods
are firmly established within epidemiology, medicine, and related fields,
and in fact, much of the recent literature on application and development
of ordinal regression techniques is found within the research of the larger
public health community. Results of many of these statistical or compar-
ative studies are mentioned here. Educational and social scientists may
not typically focus on variables similar to those studied by epidemiolo-
gists or medical researchers, but both fields struggle with issues' smound-
ing the aptness of models, and much can be learned about appllcau?n§ of
different approaches to statistical dilemmas from the broader statistical
literature.

In this book, three different methods for analyzing ordinal outcome data
will be reviewed and illustrated through examples. These include the pro-
portional or cumulative odds model (CO) (Agresti, 1996; Arms]:rong &
Sloan, 1989; Long, 1997; McCullagh, 1980), the continuation ratio model
(CR) (Armstrong & Sloan, 1989; D. R. Cox, 1972; Greenland, 1994), and
_the adjacent categories model (AC) (Agresti, 1989; Goodman, 1983). In
addition, I present examples of partial proportional odds (Peterson & Har‘rell,
-1990) and discuss the partial proportional hazards or unconstrained continu-
ation ratio models (Bender & Benner, 2000; Cole & Ananth, 2001) as



analysis alternatives for situations in which assumptions of the proportional
odds or continuation ratio model are violated.

Ordinal logit models can be viewed as extensions of logistic regression for
dichotomous outcomes, and consequently these models closely follow the
approaches and model building strategies of both logistic and ordinary least
squares regression analysis. I have chosen to focus on logit models for ordi-
nal outcomes because the interpretations of probability and odds that derive
froni these models are somewhat intuitive. Alternatives to the methods pre-
sented here include, for example, Anderson’s (1984) stereotype model, pro-
bit regression models, and the use of polychoric correlations for structural
equation modeling of ordinal outcome variables. These and other strategies
for analysis of ordinal data are discussed in Huynh (2002), Borooah (2002),
Ishii-Kuntz (1994), Liao (1994), Menard (1995), and Joreskog and Sérbom
(1996); valuable references on the treatment of ordinal variables in general
include Long (1997), Clogg and Shihadeh (1994), and Agresti (1989, 1996).

The cumulative odds model is the most frequently used ordinal regres-
sion model, although all of the models examined here are still relatively
unfamiliar to many applied researchers, particularly in the educational sci-
ences. Each of the models I review can address questions that are unique to
the study of ordinal outcomes and that may not be satisfactorily answered
by treating the data as either interval/ratio or strictly categorical.

Software and Syntax

The SAS® and SPSS® software packages are used for the examples pre-
sented here. Within each of these statistical packages, I used SAS PROC
LOGISTIC (ascending -and descending options), SAS PROC GENMOD,
SAS PROC CATMOD, SPSS LOGISTIC REGRESSION, and SPSS PLUM
to run the different models. Appendices in this book include the syntax used
for each analysis presented, and both this syntax and the data can be found
at my Web site (http:/faculty.education.uconn.edu/epsy/aoconnell/index
.htm). Limitations of, as well as similarities and differences between, the
statistical packages will be noted as needed throughout this book. All analy-
ses presented here assume independence across children. In the final chap-
ter of this book, I briefly discuss the treatment of ordinal response variables
for multilevel data, a rapidly building field that logically extends from work
on the proportional odds model for single-level data and the fitting of mul-
tilevel models in general.

I focus on SAS and SPSS to illustrate the concepts and procedures
for ordinal logit models included in this book. Another comprehensive

statistical package for the analysis of categorical data in general, one that
contains excellent modules for analysis of ordinal data, is Stata (Long &
Freese, 2003). Stata also includes graphical capabilities that can facilitate
further understanding of the models presented here. The descriptions of the
models included in this book are appropriate regardless of choice of statis-
tical package. ’

Organization of the Chapters

Chapter 2 describes the data set used for the analyses presented here.
Chapter 3 includes a brief review of logistic regression analysis, clarifying
terminology important to the understanding of logit type ordinal regression
models including odds, odd ratios, logits, and model fit. Each of the three
ordinal models (CO, CR, AC) will then be described and illustrated in
Chapters 4-6, building on their conceptual similarity to logistic regression
models. For each of the ordinal models presented, model and variable
effects will be explained, and assessment of model fit and predictive effi-
ciency will be discussed. Chapter 4 provides a comparison with ordinary
least squares multiple regression. Finally, Chapter 7 reviews and summarizes
-~ the analyses studied here and discusses some extensions to these models.
- Selected computer output will be included for each of the analyses
. presented.

~ The data for the examples contained in this book were drawn from
~ the Early Childhood Longitudinal Study-Kindergarten Cohort (ECLS-K),
which tracks the reading and arithmetic progress of a nationally represen-
tative sample of kindergarten children through the completion of first
grade (third-grade data were released in March, 2004). Data from first-
grade entry are analyzed here. The ECLS-K is conducted by the U.S.
National Center for Education Statistics (NCES) and, in part, assesses
student proficiency for early literacy, mathematics, and general knowledge
as a series of “stepping-stones,” which reflect the ordinal skills that form
the foundation for further learning (West, Denton, & Germino-Hausken,
2000). All of the data are available on the first-grade public-use databases
that can be obtained from NCES.? The examples illustrated here were

ological use of ordinal regression models; although they are informative,
they are not meant to provide a complete picture of early reading achieve-
ment for first-grade children. See, for example, Snow, Burns, and Griffin
(1998) for further information about factors affecting early-childhood
reading.



2. CONTEXT: EARLY CHILDHOOD
LONGITUDINAL STUDY

Overview of the Early Childhood Longitudinal Study

The Early Childhood Longitudinal Study provides a comprehensive picture
of first-grade children, their kindergarten and early home experiences, their
teachers, and their schools. The ECLS-K investigates early literacy, read-
ing, and arithmetic skills. It includes a battery of IRT (item-response the-
ory)-scaled cognitive assessments collected on a nationally representative
sample of approximately 20,000 children within sampled schools. In addi-
tion to the norm-referenced continuous IRT measures, the ECLS-K assesses
criterion-referenced student proficiency for literacy and numeracy through
responses to a series of five 4-item clusters that, as a set, reflect the skills
that serve as stepping-stones for subsequent learning in reading and math-
ematics. The resulting scores can be used individually for student-level
diagnosis and to identify directions for individualized interventions, as well
as being used at a group level to suggest possible interventions for groups
of students functioning at different levels of mastery. The analyses discussed
in this book will focus on the criterion-referenced scores for literacy
proficiency.

The categorization of early literacy proficiencies represented in the
ECLS-K assessment instrument is consistent with the skills that have been
identified as the building blocks of reading mastery: phonemic awareness
(the understanding that letters represent spoken sounds), phonics (under-
standing the sounds of letters in combination), fluency, vocabulary, and text
comprehension (CIERA, 2001). The skills underlying literacy development
are hierarchical and interdependent; the later skills cannot realistically
be expected to emerge without the development of the former. Table 2.1
describes the proficiency categories utilized by the ECLS-K.

The ability to respond sufficiently to the cluster of items represented by
each category is assumed to follow the Guttman model (Guttman, 1954;
NCES, 2000, 2002); that is, mastery at one level assumes mastery at all pre-
vious levels. On the ECLS-K assessments, a pass/fail score was obtained
for each child in the sample on each cluster of items representing a profi-
ciency level (1 through 5) until the child failed to pass three out of the four
items in a cluster.> Mastery of one cluster indicates mastery of all previous
clusters; testing was stopped once a child was unable to successfully pass
a cluster of items.* Consequently, there are five dichotomous variables for
literacy proficiency (C3RRPRF1 to C3RRPRFS5) in the ECLS-K database.
For example, if a child passes three out of four items in literacy level 1 and

TABLE 2.1
Proficiency Categories for the ECLS-K
Measures for Early Literacy

Proficiency Category Description

Did not pass level 1

Can identify upper/lowercase letters

Can associate letters with sounds at the beginnings of words
Can associate letters with sounds at the ends of words

Can recognize sight words

Can read words in context

W oh W N e O

SOURCE: National Center for Education Statistics (2002).

three out of four items in literacy level 2, that child would receive a value
of 1 for both C3RRPRF1 and C3RRPRF2. If this same child does not pass
three out of four iterns in the next cluster (literacy level 3), a score of 0 is
~ recorded for C3RRPRF3 as well as for all subsequent levels. For the analy-
~ ses presented here, the series of five dichotomous proficiency values was

used to create a single variable that reflects mastery of the content areas on
- an ordinal scale. After recoding to achieve a single ordinal variable, the
. hypothetical student above would receive a value of 2 as his or her profi-
~ ciency score, representing mastery of material up to and including level 2.
- In this manner, a single variable (profread) with six possible outcome cat-
egories (levels 0 through 5) for the assessment of literacy proficiency was
derived for each child in the ECLS-K sample. A score of 0 on this ordinal
scale implies that the child did not attain mastery for the cluster of items
representing proficiency level 1.5

Practical Relevance of Ordinal Outcomes

Ordinal proficiency scores can reveal to researchers and educators how far
along children are on the path to becoming fully literate as they continue
through their primary school education. Analyzing the ordinal proficiency
scores rather than the continuous IRT-scaled scores as the variables of inter-
est highlights the role that proficiency assessments can play in the identifi-
¢ation and selection of students for early intervention programs. These
alyses can suggest concrete areas in the hierarchy where interventions
ight be tailored to meet particular student needs. Ordinal proficiency out-
mes, and indeed ordinal variables in general, have a great deal of prag-
matic utility in the degree to which they can direct intervention to specific
vels of proficiency. For the classroom teacher or reading specialist,



proficiency scores may be far more valuable, and interpretable, than

knowing that a child’s IRT-scaled score on a cognitive assessment is “35.”.

Interventions tailored to the classroom, or school practices or policies
found to be associated with the stepping-stones to successful acquisition of
literacy skills, may be far more effective for individual students than strate-

gies based on attempts to improve a global cognitive test score (obtained at

the classroom, school, or district level).

Variables in the Models

The variables selected as predictors in the analyses presented here have
been found to be associated with early reading skill among young children.
Initial data summaries of the ECLS kindergarten cohort indicate that some
children do enter kindergarten with greater preparedness and “readiness” to
learn than that exhibited by other-children, perhaps putting them a step
ahead of their peers for the important early grades at school (NCES, 2000).
ECLS-K studies have shown that children entering kindergarten who have
particular characteristics (living in a single-parent household, living in a
family that receives welfare payments or food stamps, having a mother with
less than a high school education, or having parents whose primary lan-
guage is not English) tended to be at risk for low reading skills (Zill &
West, 2001). Pre-kindergarten experiences related to family life (e.g., being
read to by parents), attendance at preschool or day care, and personal char-
acteristics (e.g., gender) may relate to children’s initial proficiency in read-
ing as well as to their potential growth in skills and abilities across the
kindergarten year and beyond. For example, girls typically enter kinder-
garten with slightly greater early literacy ability than boys. Child-focused
predictors of success and failure in early reading are helpful for under-
standing how individual children may be at risk for reading difficulties.
From a policy and practice perspective, it is clearly desirable that teachers,
school administrators, parents, and other stakeholders be aware of these
individual factors related to early proficiency so that these stakeholders can
develop and support curriculum and instructional practices that can pro-
mote achievement for all students relative to their first-grade and kinder-
garten entry skills.

Descriptive statistics for the explanatory variables across the six profi-
ciency categories are presented in Table 2.2. These include gender, shown
here as % male (0 = female, 1 = male), risknum (number of family risk
characteristics, ranging from O to 4, based on parent characteristics includ-
ing living in a single-parent household, living in a family that receives

welfare payments or food stamps, having a mother with less than a high
school education, or having parents whose primary language is not
English), famrisk (dichotomous variable indicating whether or not any
family risk was present, coded 0 = no, 1 = yes [or risknum greater than or
equal to 1]), plreadbo (frequency with which parents read books to
children prior to kindergarten entry, rated as 1 to 4 with 1 = never and 4 =
every day), noreadbo (dichotomized variable indicating 0 = parent reads
books to child three or more times a week to every day and 1 = parent reads
books to child less than once or twice per week), halfdayK (child attended
half-day versus full-day kindergarten, coded 0 = no [attended full-day K},
1 = yes [attended half-day K]), center (whether or not child ever received
center-based day care prior to attending kindergarten; 0 = no, 1 = yes),
minority (0 = white/Caucasian background; 1 = minority [any other] back-
ground), wkses! (family SES assessed prior to kindergarten entry, continu-
ous scaled score with mean of 0), and plageent (age of child in months at
kindergarten entry). An additional variable, included for descriptive pur-
poses but not included in the models because of design concerns, is public
(type of school child attended, rated as 0 = private, 1 = public).

TABLE 2.2
Descriptive Statistics at First-Grade Entry, N=3,365

Reading Proficiency Level (profread)

0 1 2 3 4 5 Total
(n=67) (n=278) (n=594) (n=1482) (n=587) (n=357) (N=3365)

% profread  2.0% 8.3% 17.7% 44.0% 17.4% 10.6% 100%
- % male 71.6% 58.6% 53.9% 49.6% 43.6% 42.3% 49.7%
risknum )
M 97 a1 .65 44 32 25 47
(SD) (1.04) (0.88) (0.88) (0.71) (0.61) (0.53) (0.75)
% famrisk  582% 529%  43.8% 32.5% 25.9% 20.7% 34.3%
% noreadbo 38.8%  27.0% 21.7% 15.5% 13.1% 7.6% 16.7%
% halfdayK 433% 41.7%  46.3% 48.0% 40.7% 43.7% 45.3%
% center 71.6% 73.7% 71.0% 77.5% 78.7% 84.9% 76.9%
% minority  59.1% 58.3%  48.5% 33.3% 34.2% 33.9% 38.8%
whksesl
M —-6133 -2705 —.1234 .1490 2807 .6148 1235
(SD}) 0.67) (0.64) 0.71) 0.75) (0.70) (0.75) (0.76)
plageent
M 65.6 65.1 65.5 66.1 66.5 67.1 66.1
- (SD) (440) (434 397 (4.00) 4.07) (3.86) (4.06)
% public 985% 93.5% 86.9% 76.7% 70.9% 61.9% 77.7%
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The design of the ECLS-K sampling plan called for oversampling of
children with Asian and Pacific Islander backgrounds, and it currently

includes three waves of data, collected at kindergarten entry, at the end of

the kindergarten year, and at the end of the first-grade year. Third-grade
data were released in the spring of 2004. Data also were collected on 2 30%
subsample of children at first-grade entry. All data used for the examples
presented here were contained in the 30% first-grade subsample; the
children had no missing data on the variables of interest, were first-time
kindergarteners (no repeaters), and remained in the same school for first
grade that they attended in kindergarten. Given the focus of this book and
the oversampling of Asian/Pacific Islanders, coupled with sparse cells for
other minority groups, a dichotomous variable for race/ethnicity was cre-
ated with a classification of 1 = minority group and 0 = white/Caucasian for
these illustrative models. With this criteria, there were n = 3,365 children
from 255 schools (57 private and 198 public), with an average of 13
students per school. Incorporating the nested design into the analysis of
ordinal outcome data is addressed in Chapter 7; all other analyses assume
independence of children across schools.

3. BACKGROUND: LOGISTIC REGRESSION

Overview of Logistic Regression

Ordinal regression models are closely related to logistic models for
dichotomous outcomes, so I begin with a brief review of logistic regression
analysis in order to highlight similarities and differences in later chapters.
Other authors in the QASS series and elsewhere (e.g., Cizek & Fitzgerald,
1999; Hosmer & Lemeshow, 1989, 2000; Menard, 1995, 2000; Pampel,
2000) have covered logistic regression in depth, so only those concepts
important to the discussion later in this book are included here.

The terminology and estimation strategies for fitting ordinal regression
models are fairly straightforward extensions of those used for logistic
regression. These models are collectively defined as a class of generalized
linear models, consisting of three components:

e A random component, where the dependent variable ¥ follows one of the
distributions from the exponential family such as the normal, binomial, or
inverse Gaussian
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o A linear component, which describes how a function, Y’, of the dependent
variable ¥ depends on a collection of predictors

e A link function, which describes the transformation of the dependent variable

Yo Y’ (Fox, 1997).

The identity link function does not alter the dependent variable, leading
to the general linear model for continuous outcomes, for which multiple
linear regression is the familiar case. The logit link function transforms the
outcome variable to the natural log of the odds (explained below), which
leads to the logistic regression model.

Logistic analyses for binary outcomes attempt to model the odds of an
event’s occurrence and to estimate the effects of independent variables on
these odds. The odds for an event is a quotient that conveniently compares
the probability that an event occurs (referred to as “success”) to the proba-
bility that it does not occur (referred to as “failure,” or the complement of
success). When the probability of success is greater than the probability of
failure, the odds are greater than 1.0; if the two outcomes are equally likely,
the odds are 1.0; and if the probability of success is less than the probabil-
ity of failure, the odds are less than 1.0. _

For the ECLS-K example described above, suppose we are interested in
studying the attainment of reading proficiency category 5 (sight words)
among children at first-grade entry. The outcome can be described as
binary: A child attains proficiency in category 5 (success) or not (failure).
The odds of reaching category 5 are computed from the sample data by
dividing the probability of reaching category 5 (scored as Y = 1) by the
probability of not reaching category 5 (scored as Y =0):

P = 1 _ PY = D
PY=0 1-P¥=1

Odds =

To examine the impact on the odds of an independent variable, such as
ender or age, we construct the odds ratio (OR), which compares the odds
or different values of the explanatory variable. For example, if we want to
ompare the odds of reaching proficiency category 5 between males (coded
= 1) and females (coded x = 0), we would compute the following ratio:

P¥ =1x=1)
T PO =1x=D
OR=—FF =1x=0)

I— PO =1x=0)
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Odds ratios are bounded below by 0 but have no upper bound; that is,
they can range from O to infinity. An OR of 1.0 indicates that an explana-
tory variable has no effect on the odds of success; that is, the odds of suc-
cess for males is the same as the odds of success for females. Small values
of the OR (< 1.0) indicate that the odds of success for the persons with the
value of x used in the denominator (0 = females) are greater than the odds
of success for the persons with the higher value of x used in the numerator
(1 = males). The opposite is true for values of the OR that exceed 1.0; that
is that the odds for males of being in proficiency category 5 is greater
than the odds for females. The nature and type of coding used for the
independent variables become important in interpretation; in this example
and throughout this text, I used simple dummy or referent coding. Other
approaches to coding categorical independent variables can change the
interpretation of that variable’s effect in the model; discussions of alter-
native approaches to categorizing qualitative data in logistic regression
models can be found in Hosmer and Lemeshow (2000).

The OR is a measure of association between the binary outcome and
an independent variable that provides “a clear indication of how the risk of
the outcome being present changes with the variable in question” (Hosmer
& Lemeshow, 1989, p. 57). Although the probability of an event could be
modeled directly through the linear probability model (i.e., using ordinary
linear regression on the dichotomous [0, 1] dependent variable), such an
approach leads to some serious interpretation problems. The linear proba-
bility model can yield implausible predictions outside the 0, 1 bounds for
probability, particularly if the independent variable is continuous. In addi-
tion, the typical assumptions of homoscedasticity and normality of errors
from the ordinary linear regression model are violated when the outcome
is dichotomous, calling the validity of results from such an approach into
question (Cizek & Fitzgerald, 1999; Ishii-Kuntz, 1994; O’Connell, 2000).
Instead, when the outcome is dichotomous, we model the odds, or more
specifically, we model the natural (base ¢) log of the odds, referred to as the
logit of a distribution.

This simple transformation of the odds has many desirable properties.
First, it eliminates the skewness inherent in estimates of the OR (Agresti,
1996), which can range from 0 to infinity, with a value of 1.0 indicating the
null case of no change in the odds. The logit ranges from negative infinity
to infinity, which eliminates the boundary problems of both the OR and
probability. The transformed model is linear in the parameters, which
means that the effects of explanatory variables on the log of the odds are
additive. Thus, the model is easy to work with and allows for interpretation
of variable effects that are exceptionally straightforward, and for model-
building strategies that mirror those of ordinary linear regression.
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This process can be extended to include more than one independent
variable. fwe letm(Y = 11X, X, . . - Xp) = 7i(x) represent the probability of
“success,” or the outcome of interest (e.g., a child being in proficiency cat-
egory 5), for a given set of p independent variables, then the logistic model
can be written as

N _ Tno _ 7 (%)
1Y) = logit [x ()] = In (-————1 z n@)
=a+p X1+ X2+ BpXp

In this expression, Y’ is simply a convenient way to refer to the odds in
. the transformed outcome variable; rather than predicting Y directly, we are
redicting the (log of the) odds of Y = 1. The link function describes the
rocess of “linking” the original Y to the transformed outcome: f(y) = In(Y")
= In[r(x)/(1 — (XM}, which is referred to as the logit link. Solving for 7t(x)
gives us the familiar expression for the logistic regression model for the

expla + Bi1 X1+ 2 X2 + ... BpXp)
1+expla + B1X1 + B2Xa + .- BpXp)
_ 1
T 1+ expl—(a¢+ p1 X1+ f2 X2 +. . BpXp)l

]

n(®)

Statistical packages such as SPSS and SAS provide maximum likeli-
ood (ML) estimates of the intercept and regression weights for the vari-
bles in the model. Maximum likelihood estimates are derived using an
erative method that returns the “values for the population parameters
at ‘best’ explain the observed data” (Johnson & Wichern, 1998, p. 178).
These ML estimates maximize the likelihood of obtaining the original
ata, and because the logistic model is developed through a nonlinear
ransformation of the outcome, the method does not require a pormal dis-
ibution of the error terms, as does ordinary least squares estimation. The
ikelihood represents the probability that the observed outcomes can be
dicted from the set of independent variables. Likelihood can vary
between 0 and 1; the log-likelihood (LL) varies from negative infinity to
Multiplying the LL by _2 creates a quantity that can be used for
othesis testing purposes to compare different models (Hosmer &
meshow, 2000).

........
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Assessing Model Fit

One way to assess how well a fitted model reproduces the observed data
is to compute the “deviance” for the fitted model. The deviance represents
how poorly the model reproduces the observed data, and it is found by com-
paring the likelihood of the fitted model to a model that has a perfect fit,
called the saturated model. The saturated model has as many parameters as
there are values of the independent variable; the likelihood of the saturated
model is 1.0, and —2LL(saturated model) = 0. The “deviance” of any model,
D_, is thus the quantity —2LL (see Hosmer & Lemeshow, 2000). We would
expect the “poorness” of fit to decrease (toward 0) with better-fitting
models. The fit of two nested models, with variables in Model 1 a subset of
those in Model 2, can be compared by considering the difference of their
deviances: G=D_, - D_,. The quantity G represents “goodness” of fit, and
for large samples, G follows an approximate chi-square distribution with
degrees of freedom equal to the difference in number of parameters esti-
mated between Model 1 and Model 2. A statistically significant G indicates
that Model 2 has less “poorness” of fit than Model 1.

When Model 1 is the null model, this comparison provides an omnibus
test (assuming large-sample properties and non-sparse cells) for whether
or not the fitted model reproduces the observed data better than the null, or
intercept only, model. However, it does not tell us how well the model per-
forms relative to the saturated, or perfect, model. With categorical predic-
tors, SAS tests D (which compares the fitted to the saturated model) using
the Pearson 2 criteria or the Deviance ) criteria. Neither of these is appro-
priate when continuous explanatory variables are included (see Allison,
1999; Hosmer & Lemeshow, 2000). When explanatory variables are cate-
gorical, these tests can be generated in SAS using the ‘“/aggregate scale=none”
option in the model statement.

With small samples or when sparse cells are present in the data (which
nearly always will occur with the inclusion of continuous independent vari-
ables in the model), alternative methods for assessing model fit should be
considered; a common strategy is known as the Hosmer-Lemeshow (H-L)
test (1989, 2000). The H-L test is obtained through SAS by requesting the
“/lackfit” option in the model statement; in SPSS, the test is provided when
“goodfit” is included in the print statement.

The H-L test works well when independent variables (IVs) are continu-
ous, because it deals directly with the number of covariate patterns within
the data. When IVs are continuous, there is essentially a different possible
covariate pattern for each observation in the data set. Briefly, the H-L test
forms several groups referred to as “deciles of risk” based on the estimated
probabilities for the sample. In most situations, g = 10 groups are formed,
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but there may be fewer depending on similarity of estimated probabilities
across different covariate patterns. The cases within these deciles are then
used to create a g x 2 table of observed to expected frequencies, and a
Pearson 2 statistic is calculated for this table (Hosmer & Lemeshow, 1989,
2000). If the model fits well, agreement is expected between the observed
and expected frequencies, so that the null hypothesis of a good fit between
observed and expected frequencies from the model would be retained. The
:H—L test has been criticized in the literature for lack of power (Allison,
1999; Demaris, 1992), but reliance on a single test to indicate model
adequacy is in itself discouraged (Hosmer & Lemeshow, 2000).7 Supple-
ental strategies include measures of association and predicative efficiency,
iscussed later in this chapter.

Interpreting the Model

Typically, SPSS models the log of the odds for the dependent variable
oded with the higher value (the 1, if the outcome is coded as 0 or 1), but
AS by default models the response coded with the lower value. With
inary outcomes, the interpretation of results and effects of independent
ariables on the odds is not affected by decisions of how “success” versus
failure” are coded, because these two events are complements of each
ther. For example, let the probability of “success” as defined by P(reach-
ng proficiency category 5) = .2. Then, the probability of “failure” or P(not
éaching proficiency category 5) = 1 —.2 = .8. The odds of success would
hen be .25 (.2/.8). The odds for the complement of the event, which is not
saching proficiency category 5, would be 1/.25 or 4.0 (.8/.2). Because
ere are only two possible outcomes for the dependent variable, the odds
for the complement of an event is simply the inverse of the odds for that
vent. When the logistic transformation is applied, we see that taking the
og of the odds of an event (In(.25) =—1.3863) has the opposite sign, but the
e magnitude, of the log of the odds for the complement of the event
In (4) = +1.3863). In the logistic regression model, reversing the coding for
e outcome being modeled amounts to the same probability predictions
interpretations once the direction of the regression coefficients and the
atercept are taken into account. With dichotomous outcomes, use of the
‘descending” option in the model statement for SAS changes the default
roach and asks the computer to model the odds for the higher-valued
come category, which would be the category labeled Y = 1 if the out-
nes are coded as 0 or 1 (or category 2 if the outcomes are labeled as 1
2). However, with more than two ordinal response categories, applying
““descending” option can change the model dramatically and must be
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used with care. Use of this option for ordinal outcomes will be explained
fully in Chapter 4.

For j = 1 to p independent variables, the regression weights in the multi-
variate logistic model represent the change in the logit for each one-unit
increase in X,, controlling or adjusting for the effects of the other indepen-
dent variables in the model. Because it is more intuitive to consider variable
effects in terms of the odds rather than the log-odds (the regression weights
are in log-odds), information about the odds themselves is found by expo-
nentiating the weights for the variables in the model (i.e., exp(bj)). The
exponentiations of the regression weights are the ORs and are routinely
reported in computer runs. The ORs can be interpreted directly to indicate
the effect of an independent variable on the odds of success, and the per-
centage change in the odds also can be calculated using the following
formula: (100 x [OR - 1]).

Strong associations between independent variables and the outcome
typically are represented by ORs farther from 1.0, in either direction. Long
(1997) refers to the ORs as “factor change” estimates (p. 79). For a unit
change in the independent variable, the corresponding OR is the factor
by which the odds of “success” are expected to change, controlling for all
other independent variables in the model. Statistical significance of an OR
typically is assessed by testing if the regression coefficient, ﬁj, is statisti-
cally different from zero through one of three approaches: a Wald, score, or
likelihood ratio test. In the Wald test, the parameter estimate for the effect
of each independent variable in a logistic model is divided by its respective
standard error, and the results are squared to represent a value from the chi-
square distribution with one degree of freedom under the null hypothesis of
no effect. However, the Wald statistics can be problematic in small samples;
in samples with many different data patterns, such as when an independent
variable is continuous rather than categorical; or in samples with sparse
cells for categorical IVs (Jennings, 1986; Menard, 1995). Both SPSS and
SAS report Wald chi-square statistics for each variable in the fitted model.

The score test for the contribution of an independent variable in the
model relies on derivatives of the likelihood function and is not directly
available in either SPSS or SAS; however, SPSS does use a score test in
stepwise procedures to determine when variables enter or exit a developing
model (Hosmer & Lemeshow, 2000). The likelihood ratio test has been
advocated as the most reliable test for contribution of an independent vari-
able to a model, but it is not directly available in either SPSS or SAS. The
test can be obtained easily through some simple but possibly time-consuming
programming, and it involves comparing the deviances for nested models,
that is, the deviance from a model that does not contain the independent
variable of interest to the deviance of a model that does. The difference in
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deviances approximates a chi-square distribution with one degree of freedom.
Because the focus of this book is on development and overall interpretation
of ordinal models, I chose to rely on the Wald test for assessing effects of
explanatory variables. However, researchers do need to be aware that alter-
patives to this test exist.

Measures of Association

ere are several logistic regression analogs to the familiar model R? from
dinary least squares regression that may be useful for informing about
ength of association between the collection of independent variables and
e outcome, although Menard (2000) and others (Borooah, 2002; Demaris,
92; Long, 1997) point out that there is some disagreement among research-
s as to which proportion reduction in error measure is most meaningful.
or logit type models, the likelihood ratio R? value, RLz, seems to provide
e most intuitive measure of improvement of fit for a multivariate model
lative to the null (intercept only) model. R, ? is found by comparing two
g-likelihoods: RL2 = 1 — (log-likelihood(model)/log-likelihood(null))
osmer & Lemeshow, 2000; Long, 1997; McFadden, 1973; Menard, 2000).
: measures the proportion reduction of error (log-likelihood) achieved
om the use of the set of independent variables (relative to the null model).
ther alternatives for measuring strength of association exist, but only a
sw will be discussed in the examples to follow. Long (1997) states that
While measures of fit provide some information, it is only partial infor-
ation that must be assessed within the context of the theory motivating the
nalysis, past research, and the estimated parameters of the model being
onsidered” (p. 102). The interested reader should consult Menard’s (2000)
iscussion on the use of various R? analogs in logistic regression, as well
Borooah (2002, pp. 19-23). Huynh (2002) provides a discussion of
xtensions of these situations in which the outcome is ordinal rather than

ExampLE 3.1: Logistic Regression

A simple example will be used to illustrate the concepts above, as well as
5 provide an extension for developing an ordinal regression model. I chose
ubset of the original ECLS-K data described above: n = 702 children
who fell into proficiency categories 0, 1, or 5 when they were tested at the
ginning of first grade. Table 3.1 provides the frequency breakdown for
subsample according to gender. The subsample is fairly balanced
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TABLE 3.1 )
Cross-Tabulation of Proficiency (0, 1 versus 5) by Gender, N = 702
Y=0 Y=1
(profread (profread

Gender category 0 or 1) category 5) Totals
Males (x=1) 211 151 362
Females (x=0) 134 206 340

Totals 345 4 357 702

across the two outcomes. In the data analysis to follow, males were coded
as “x = 1” and females as “x =0, with the outcome of being in category 5
coded as “Y = 1” and being in either category O or 1 coded as “Y =07

The odds for a male being in the higher proficiency category can be
found by dividing the probability of being in category 5 by the probability
of not being in category 5:

151/362 4171
Odds (category 5|male) = 211;362 =T a1 = .7156.

Similarly for females, the odds of being in proficiency category S5 are
determined as

206/340 .6059
_ _ = 1.537.
Odds (category Sifemale) = 1777326 = 76059

From these two values, we see that for this subsample, boys have a
greater probability of being in categories 0 or 1 rather than in category 5
(the numerator is less than .5), and for girls, the opposite is true (the numer-
ator is greater than .5). Thus, the odds for a boy of being in category Sis
less than the odds for a girl of being in category 5. The odds ratio (OR)
compares these two odds and provides a measure of the association
between gender and the odds of being in category 5:

Odds (category 5|male) 7156

R = = = .466.
Odds (category 5|female) 1.537

The OR of .466 informs us that, for this subsample, the odds for boys
being in the higher proficiency category is .466 times the odds for girls of
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eing in category 5, or less than half. Put another way, being a boy
ecreases the odds of being in category 5 by 53.4% (100 x [OR — 1} =
53.4). Conversely, the odds for a girl of being in category 5 is 2.146 times
e odds for boys, or more than twice the odds for boys (1/.466 = 2.146).
In a logistic regression model, as discussed earlier, probability is trans-
ormed to the odds, and the odds are transformed to logits by taking the nat-
ural log. Selected output from fitting the logistic regression model for the
bove example using SPSS LOGISTIC REGRESSION is shown in Figure
3.1 (syntax in Appendix A, section A1). In this model, Y is coded 1 for being
1 proficiency category 5, and O if not. The explanatory variable, “gender,”
is coded 1 if the child is a boy, and O if the child is a girl. We will let
n(Y”) represent the logit, or log-odds. The prediction model is In(Y”) = .430
4 (~.765) gender. Parameter estimates are found in the last section of
Figure 3.1, “Variables in the Equation.”

- When the child is female (gender = 0), the constant represents the pre-
diction for the log of the odds; it is .430. Exponentiating this back to the
ds, we have exp(.430) = 1.537, which is, as solved for above, the odds of
ing in proficiency category 5 for a girl. For boys (coded gender = 1), our
odel’s prediction becomes .430 + (~.765 x 1) =-335. Exponentiating this
sult, we have exp(-.335) = 7153, which is (within rounding error) the
dds of being in proficiency category 5 for a boy. Finally, the OR (taking
unding into consideration) can be found by exponentiating the regression
eight for gender, exp(—.765) = .466. This value appears in the final col-
ymn of the “Variables in the Equation” table, and it is precisely the OR
etermined from the frequency data. It tells us that the odds of being in
roficiency category 5 for a boy is .466 times the odds for a girl.

For many researchers, it is easier to interpret the OR than to interpret the
ogits, but the logits can also be interpreted directly. The effect for gender
n the logistic regression model tells us how much the logit is expected to
hange when the value for gender changes by one unit, in this case from
emale) to 1 (male). Based on the Wald criteria, the effect of gender is
tistically significant in the logit model: Wald’s le = 24.690, p =.000.
implies that the estimated slope for gender is —.765 and is statistically
erent from 0, and that the OR = exp(—.765) = .466 is therefore statisti-
y different from 1.0.

In this SPSS example, the deviance of the null model is found in the sec-
n for Block 1, “Iteration History,” footnote ¢ of Figure 3.1: Dy=—2LL,=
2 974. The deviance of the fitted model containing only the variable gen-
risD_=-2LL = 047.825. The difference between these two deviances
G, =25.149, df = 1, p = .000. For this example, with only one indepen-
nt variable included in the model, the omnibus test is also the likelihood
tio test (an alternative to the Wald 2 test) for the effect of gender. The
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Logistic Regression

Case Processing Summary

Unweighted Cases® N Percent
Selected Cases Included in Analysis 702 100.0
Missing Cases 0 .0
Total 702 100.0
Unselected Cases . 0 .0
Total ’ 702 100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value Internal Value
.00 0
1.00 1

Block 1: Method = Enter

fteration History=>c+

Coefficients
lteration -2 Log-likelihood | Constant gender
Step 1 947.829 424 -.755
1 2 947.825 430 -.765

3 947.825 430 ~-.765

a. Method: Enter

b. Constant is included in the model.
c. Initial -2 Log-Likefihood: 972.974

d. Estimation terminated at iteration number 3 because

parameter estimates changed by less than .001.

Omnibus Tests of Model Coefficients

Chi-Square df Sig.

Step1 Step 25.149 1 .000
Block 25.149 1 .000

Model 25.149 1 .000

igure 3.1 (Continued)

21

Model Summary

-2 Log- Cox & Snell Nagelkerke
likelihood R Square R Square
947.825 .035 .047
Classification Table*
Predicted
CUMSP2
Percentage
- Observed .00 1.00 Correct
tep 1 CUMSP2 .00 211 134 61.2
: 1.00 151 206 57.7
Overall Percentage 59.4
The cut value is .500.
Variables in the Equation
95.0% C.1.
for EXP(B)
B S.E Wald | of | Sig. | Exp(B) | Lower | Upper
tep gender |-.765] .154 | 24.690| 1 | .000 466 | 344 .629
B Constant | 430 .111 | 15.014| 1 | .000 | 1.537

Variable(s) entered on step 1: gender.

mnibus test, found in “Omnibus Tests of Model Coefficients,” means that

Figure 3.1

Selected Output: SPSS Logistic Regression Example

e find a statistically significant decrease in the —2LL when gender is
“luded in the model. This reduction represents a proportionate reduction
-deviance that can be expressed through the likelihood ratio RL:1-
/Dy = .0258. For this model, the inclusion of gender in the model
duces the deviance of the null model (D, = -2LL,) by 2.58%.

Neither SPSS nor SAS reports R2L in their logistic regression procedures,
it as shown above, it can be calculated easily from the available statistics
ovided in either package. Both statistical packages report two variations
v the R? statistic for logit analysis: the Cox and Snell R?, which SAS
ports as the (generalized) R?, and the Nagelkerke R?, which SAS refers to
the “max-rescaled R2” The Nagelkerke R? rescales the Cox and Snell R?
e to obtain a bound of 1.0. For these data, the “Model Summary” table
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of Figure 3.1 reports R? = .035 and R? = .047. Although the omnibus test
is statistically significant, none of the R statistics is very large, suggesting
that other explanatory variables in addition to gender may be helpful in
understanding the likelihood of a child being in proficiency category 5.
Menard (2000) discusses several attempts to generalize the familiar R?from
ordinary linear regression, but he advocates R% as the most useful of the
available pseudo R”’s. ;

Attempting to reduce the fit assessment to a single value, as the collec-
tion of pseudo R?’s do, may have value in terms of comparing across com-
peting (nested) models, but this provides only a “rough index of whether
a model is adequate” (Long, 1997, p. 102). An investigation of model
adequacy can be augmented by assessing how well the observed categori-
cal outcomes are reproduced, based on whether or not an individual is
predicted to fall into his or her original outcome of Y = O or Y= 1. This
assessment of predictive efficiency supplements the information available
from the tests for model fit and the reduction in deviance statistics. Some
measures of fit or correspondence between observed and predicted out-
comes are strongly influenced by data that are highly unbalanced in terms
of distribution of frequency of the outcome, so an informed decision is best
made by computing and comparing across several different measures rather
than relying on one single measure.

To consider the ability of a model to correctly classify cases, classifica-
tion is based on the probabilities estimated from the model, and the results
are compared with the observed frequencies for each category. For any
child, if the probability of “success” based on the logistic model is greater
than .5, the predicted outcome would be 1; or else the predicted outcome
would be 0 (Hosmer & Lemeshow, 2000; Long, 1997). SPSS produces a
classification table directly, shown under Block 1: “Classification Table.”
The predicted probabilities can be requested in SAS (as well as in SPSS) to
construct the classification table; review the syntax in Appendix A, sections
Al and A2, for how to save these predicted probabilities. Although many
different kinds of classification statistics are available (Allison, 1999;
Gibbons, 1993; Hosmer & Lemeshow, 2000; Huynh, 2002; Liebetrau,
1983; Long, 1997; Menard, 1995, 2000), several seem to be reported in the
literature in preference to others and can be used with ordinal dependent
variables. These include T, which “adjusts the expected number of errors
for the base rate of the classification” (Menard, 1995, p. 29), and the
adjusted count R’or RZa iComnt® which is similar to the Goodman-Kruskal A in
its asymmetric form (that is, when one variable is being predicted from a
set of other variables); R?, diCount adjusts the raw percentage correct measure
for the likely probability of a case being assigned to the modal category of
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the observed dependent variable (DV) by chance (Liebetrau, 1983; Long,
1997). Unfortunately, there are often several different names for the same
peasures within the literature, and the reader of multiple articles or texts
hould pay close attention to the nomenclature that each author uses. For
xample, Menard (1995, 2000) refers to R?, giCount 85 kp.

. Hosmer and Lemeshow (2000) point out that model fit in terms of
correspondence between observed and estimated probabilities is often
re reliable and meaningful than an assessment of fit based on classifica-
They suggest that classification statistics be used as an adjunct to
er measures, rather than as a sole indicator of quality of the model. As
ntioned above, multiple criteria for investigating adequacy of fit of the
dels are demonstrated and reported in the examples covered here.
Neither SAS nor SPSS provides T, or A (R2a djcount) directly, but they can
calculated once the classification table is obtained. To find t_, the
ected number of errors must first be determined, and for 2 x 2 tables,

F¥=0)x f(¥ =1)

n

E(errors) = 2 x

The desired measure of association can then be calculated from

.= E(errors) x O(errors)
P E(errors)

The observed errors are the off-diagonal elements of the classification
le. A different expression for T_can be found in Menard (2000); it is also
propriate for ordinal response models:

ere i represents the index for each category of the outcome variable, n =
nple size, £, = sum of the correctly predicted categories (on the diagonal
e classification table), and f; = the observed frequency for category i.
tthese data, T,= .1878, indicating that after adjustment for the base rate,
ssification error is reduced by approximately 19% using the model with
nder as the only predictor.
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To find the R ..., Of A for the classification table, following Long
(1997) and Menar , the following calculation 1s used:
1997) and M d(2000)t¥1 following calculation i d

n '—Zfii qu — Pmode
A.p = 1 - ! = ! =
n — Amode

n— "Irrt):ie ’

where n_ . is the frequency of observed resporises in the modal category
of the outcome (maximum row marginal). For these data, 7\.p = .1739
with the observed categories treated as the dependent variable. For
the model constructed in the above example, predicting proficiency
category membership (0, 1 versus 5) based on gender reduces the pre-
diction error by 17.4%, once the marginal distribution of the DV is taken
into account.

SAS produces several ordinal measures of association within the
LOGISTIC procedure that can supplement the pseudo R?’s and the statis-
tics for predictive efficiency determined from the classification table, such
as Somers’ D, a rank order correlation statistic (Cliff, 1996a; Liebetrau,
1983). Most of the rank order statistics are based on the notion of concor-
dant versus discordant pairs. The term “pair” refers to pairing of each case
(individual) with every other case in the data set (not including itself). For
a sample of size n, there are n(n — 1)/2 possible pairings of individuals. Of
interest are pairs of individuals that do not have the same observed
response; we ignore pairings for which both cases are 0 or both cases are
1 on the outcome of interest. If the two cases have dissimilar responses, the
pair is called concordant when the predicted probability (of being classi-
fied as “success” based on the model) for the case with the observed value
of 1 is higher than the case with the observed value of 0; otherwise, the
pair is termed discordant. A pair (with dissimilar response) is tied if it can-
not be classified as either concordant or discordant (this would happen if
the predicted probabilities were very close; SAS categorizes predicted
probabilities into interval lengths of .002 (SAS, 1997). The effect is to
count the number of times the direction of prediction is accurate for
each pair of individuals with different outcomes. Somers’ D is probably
the most widely used of the available rank order correlation statistics:
Somers’ D = (nc — nd)/t; where nc = number of concordant pairs, nd =
number of discordant pairs, and t = number of pairs with different
responses. Using SAS, Somers’ D for this example is .189, which repre-
sents the strength of the correspondence between observed outcomes and
predicted probabilities.®
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Comparing Results Across Statistical Programs

facilitate use and interpretation of logistic analysis across different
atistical packages, as well as to lead into our discussion of the treatment
F ordinal outcomes, the previous model was also fit using SAS PROC

or ordinal outcomes). A summary of results is shown in Table 3.2 (syntax
it these models appears in Appendix A, sections A1-A4). All models used
e logit link function.

TABLE 3.2
. Comparison of Results for SPSS, SAS, and SPSS PLUM for a
Dichotomous Outcome: Proficiency (0, 1 versus 5)* by Gender, N =702

SPSS Logistic and
SAS (descending) SAS (ascending) SPSS PLUM
. bability estimated P(Y=1) P(Y=0) P(Y<0)
,SI'CEPt 430 -430 .335
erider = 1 (male) —765%* 765%% 0
génder =0 (female) 765%
2LL (intercept only) 972.94 972.§74 972.974°
211 (model) 947.825 947.825 947.825
25.149 (< .0001) 25.149 (< .0001) 25.149 (<.0001)
del predictions ( )
417 .583 583
.606 .394 394

if response proficiency is 0 or 1; ¥ = 1 if response proficiency is 5.
se “kernel” in the print command for SPSS PLUM to request the full value of the likelihoods.
0l

eviewing the results in the first column of Table 3.2, note that SPSS
ISTIC REGRESSION and SAS PROC LOGISTIC (descending) are
g the same model based around estimating P(Y = 1), which is the
ability that a child has a response in proficiency category 5. The prob-
ty predictions for these two identical models can be found by first
lating the logit for boys and girls using the estimates provided,
nentiating these logits to determine the odds for each group, and then
forming these odds back into probability for the response identified as
cess” (p = [odds(success)/(1 + odds(success))].
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The results for the second model, shown in Column 3 of Table 3.2, using
SAS with the ascending option, simply model the probability that a child
has a response in proficiency category 0 or 1, rather than the probability
that a child has a response in category 5. Notice that the signs on the
intercept and the effect for gender are reversed from those in Column 2,
yet they are of the same magnitude. Also note that the sum of the probabil-
ity estimates for boys in Columns 2 and 3 is equal to 1.0, and similarly for
girls. SAS with the descending option (Column 2) models the complement
of the event from the default approach (ascending, in Column 3). Thus, the
probabilities derived from the ascending approach are the complementary
probabilities to those found when using SAS with the descending option.

The model parameter estimates using SPSS PLUM look very different
from those obtained using the earlier approaches, but in fact the probability
estimates are identical to those in Column 3 (and therefore, by the rule of
complements, can be used to find the probability estimates in Column 2).
SPSS PLUM is a program specifically designed for analyzing ordinal
response variables, and the resulting parameter estimates will not exactly
correspond to those found under SPSS Logistic Regression. In particular,
the probability being estimated in SPSS PLUM is the probability of a
response being at or below a particular outcome value, that is, the lower
category codes; in contrast, SPSS LOGISTIC models the probability of
the category with the higher outcome value. Additionally, whereas SAS
handles both dichotomous and ordinal responses through its LOGISTIC
procedure, the SPSS PLUM procedure uses a slightly different formulation
of the generalized linear model that looks like: In(Y)) = 6,— B X,- In this
expression, the subscript j refers to the response category, and X, refers to
the single independent variable, gender. The estimate for the effect of gen-
der is subtracted from the intercept. Another important distinction between
PLUM results and those from logistic regression programs under SPSS or
SAS is that PLUM internally sets up the coding for categorical predictors.
In Column 4, the estimate provided for the gender effect corresponds to
when gender =0, that is, for females. The coding system used is clearly dis-
played on the printout (examples of PLUM and SAS printouts for ordinal
models will be included in the next chapters). To find the estimated prob-
ability for a girl being (at most) in proficiency categories 0 or 1—that is,
P(Y < 0)—which is equivalent in this case to P(Y = 0) because there are no
responses less than 0, we use the estimates to find the predicted logit for
girls (.335 — .765 = —.43), exponentiate the result to find the odds for girls
of being at (or below) ¥ = 0 (exp(—43) = .65), and then solve for the esti-
mated probability (.65/(1 + .65) = .394). The same process is used to find
the estimated probability for boys of being at (or below) categories 0 or 1,
or P(Y =0).
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PSS PLUM provides R?,, referred to as McFadden’s pseudo R* (Long,
7; Menard, 2000), in addition to R? . and R?. In order to obtain the
ssary values for the —2LL deviance statistics, the “kernel” option must
specified in the SPSS PLUM “/print” statement, as shown in syntax Ad
Appendix A.
The previous discussion and simple comparison of how SAS and SPSS
binary outcomes illustrate that although model parameter estimates
y vary on the surface, the resulting predicted probabilities computed
m the model estimates, as well as model fit statistics, are consistent
oss packages and approaches. These simple examples also illustrate that
§ important for an analyst to be aware of the outcome being predicted
well as how categorical independent variables are incorporated into the
Is, once a statistical package is selected. Distinctions across approaches
ackages become even more critical as the number of categories for an
al response variable increases beyond the binary case.

4. THE CUMULATIVE (PROPORTIONAL)
ODDS MODEL FOR ORDINAL OUTCOMES

Overview of the Cumulative Odds Model

ith only two categories for an outcome variable, logistic regression is used
odel the likelihood of one of the outcomes, usually termed the “suc-
. as a function of a set of independent variables. The estimated proba-
es for the response of interest, P(success), as well as for its complement,
P(success), can be determined using the prediction model for the logits,
hown in the example in Chapter 3. When the possible responses for an
ome variable consist of more than two categories and are ordinal in
¢, the notion of “success” can be conceived of in many different ways.
ession models for ordinal response variables are designed for just this
ation and are extensions of the logistic regression model for dichotomous
The complexity in fitting ordinal regression models arises in part
ause there are so many different possibilities for how “success,” and the
sequent probability of “success,” might be modeled.

example, given a K-level ordinal response variable, such as profi-
ey in early literacy with K = 6 as in the ECLS-K study (Table 2.1), we
id derive several different representations of “success” depending on
e view the data. In general, K-level ordinal data can be partitioned by
1 “success” cutpoints (Fox, 1997; McCullagh & Nelder, 1983). Success





