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The results for the second model, shown in Column 3 of Table 3.2, using 
SAS with the ascending option, simply model the probability that a child 
has a response in proficiency category 0 or 1, rather than the probability 
that a child has a response in category 5. Notice that the signs on the 
intercept and the effect for gender are reversed from those in Column 2, 
yet they are of the same magnitude. Also note that the sum of the probabil­
ity estimates for boys in Columns 2 and 3 is equal to 1.0, and similarly for 
girls. SAS with the descending option (Column 2) models the complement 
of the event from the default approach (ascending, in Column 3). Thus, the 
probabilities derived from the ascending approach are the complementary 
probabilities to those found when using SAS with the descending option. 

The model parameter estimates using SPSS PLUM look very different 
from those obtained using the earlier approaches, but in fact the probability 
estimates are identical to those in Column 3 (and therefore, by the rule of 
complements, can be used to find the probability estimates in Column 2). 
SPSS PLUM is a program specifically designed for analyzing ordinal 
response variables, and the resulting parameter estimates will not exactly 
correspond to those found under SPSS Logistic Regression. In particular, 
the probability being estimated in SPSS PLUM is the probability of a 
response being at or below a particular outcome value, that is, the lower 
category codes; in contrast, SPSS LOGISTIC models the probability of 
the category with the higher outcome value. Additionally, whereas SAS 
handles both dichotomous and ordinal responses through its LOGISTIC 
procedure, the SPSS PLUM procedure uses a slightly different formulation 
of the generalized linear model that looks like: In(lj') = ~- f3IXI' In this 
expression, the subscript j refers to the response category, and Xl refers to 
the single independent variable, gender. The estimate for the effect of gen­
der is subtracted from the intercept. Another important distinction between 
PLUM results and those from logistic regression programs und,er SPSS or 
SAS is that PLUM internally sets up the coding for categorical predictors. 
In Column 4, the estimate provided for the gender effect corresponds to 
when gender = 0, that is, for females. The coding system used is clearly dis­
played on the printout (examples of PLUM and SAS printouts for ordinal 
models will be included in the next chapters). To find the estimated prob­
ability for a girl being (at most) in proficiency categories 0 or I-that is, 
P(Y::;; O)-which is equivalent in this case to P(Y = 0) because there are no 
responses less than 0, we use the estimates to find the predicted logit for 
girls (.335 - .765 = -.43), exponentiate the result to find the odds for girls 
of being at (or below) Y = 0 (exp(-.43) = .65), and then solve for the esti­
mated probability (.65/(1 + .65) = .394). The same process is used to find 
the estimated probability for boys of being at (or below) categories 0 or 1, 
or P(Y= 0). 

," 
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SPSS PLUM provides R2L' referred to as McFadden's pseudo R2 (Long, 
1997; Menard, 2000), in addition to R2cs and R2N' In order to obtain the 
necessary values for the -2LL deviance statistics, the "kernel" option must 
be specified in the SPSS PLUM "/print" statement, as shown in syntax A4 
in Appendix A. 

The previous discussion and simple comparison of how SAS and SPSS 
treat binary outcomes illustrate that although model parameter estimates 
may vary on the surface, the resulting predicted probabilities computed 
from the model estimates, as well as model fit statistics, are consistent 
across packages and approaches. These simple examples also illustrate that 
it is important for an analyst to be aware of the outcome being predicted 
as well as how categorical independent variables are incorporated into the 
models, once a statistical package is selected. Distinctions across approaches 
and packages become even more critical as the number of categories for an 
ordinal response variable increases beyond the binary case. 

4. THE CUMULATIVE (PROPORTIONAL) 
ODDS MODEL FOR ORDINAL OUTCOMES 

Overview of the Cumulative Odds Model 

With only two categories for an outcome variable, logistic regression is used 
to model the likelihood of one of the outcomes, usually termed the "suc­
cess," as a function of a set of independent variables. The estimated proba­
bilities for the response of interest, P( success), as well as for its complement, 
1 - P(success), can be determined using the prediction model for the logits, 
as shown in the example in Chapter 3. When the possible responses for an 
outcome variable consist of more than two categories and are ordinal in 
nature, the notion of "success" can be conceived of in many different ways. 
Regression models for ordinal response variables are designed for just this 
situation and are extensions of the logistic regression model for dichotomous 
data. The complexity in fitting ordinal regression models arises in part 
because there are so many different possibilities for how "success," and the 
consequent probability of "success," might be modeled. 

For example-t given a K-Ievel ordinal response variable, such as profi­
ciency in early literacy with K = 6 as in the ECLS-K study (Table 2.1), we 
could, derive several different representations of "success" depending on 
how we view the data. In general, K-level ordinal data can be partitioned by 
K - 1 "success" cutpoints (Fox, 1997; McCullagh & NeIder, 1983). Success 
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is, of course, a relative tenn; generally, it designates an event of interest. For 
example, "success" might be defined as having a child score in category 0 
on the mastery test, that is, those children who were not able to recognize 
upper- and/or lowercase letters. Under this partitioning of the data, our 
interest would be in identifying factors associated with increased likelihood 
of being in this lowest category, rather than being beyond category 0, in 
categories 1 through 5. Perhaps there are harmful child, family, or school 
characteristics associated with increased probability of being in this lowest 
category. For these explanatory variables, we would calculate the odds of 
being at (or below) category O. 

We could next conceive of "success" as being at or below category 1; our 
interest in this partitioning of the data would be in identifying factors asso­
ciated with greater likelihood of being in categories 0 or 1 relative to the 
likelihood of being beyond the lowest stages, in categories 2 through 5. We 
could continue to describe the data in this cumulative fashion, with the final 
conceptualization of "success" as being at or below the Kth category, which 
of course wiH always occur. Hence, the last split or partitioning of the data 
becomes unnecessary. Using this cumulative progression, we would have 
K - 1, or 5, distinct possible "success" characterizations of the data, given 
K = 6 ordinal response categories. 

The analysis that mimics this method of dichotomizing the outcome, in 
which the successive dichotomizations fonn cumulative "splits" to the data, 
is referred to as proportional or cumulative odds (CO) (Agresti, 1996; 
Annstrong & Sloan, 1989; Long, 1997; McCullagh, 1980; McCullagh & 
NeIder, 1983). It is one way to conceptualize how the data might be sequen­
tially partitioned into dichotomous groups, while still taking advantage of 
the order of the response categories. The ordinal nature of this approach 
is so appealing because of its similarity to logistic regression. If a single 
model could be used to estimate the odds of being at or below a given 
category across all cumulative splits, that model would offer far greater par­
simony over the fitting of K - 1 different logistic regression models corre­
sponding to the sequential partitioning of the data, as described above. The 
goal of the cumulative odds model is to simultaneously consider the effects 
of a set of independent variables across these possible consecutive cumula­
tive splits to the data. There are other approaches, however, to defining 
"success." Each different method for performing ordinal regression charac­
terizes the partitioning of the data in a very distinct way, and therefore they 
address very different research questions. The conceptualizations of how 
the data may be split to correspond to the cumulative odds (CO) model, as 
well as for the two other methods to fitting ordinal regression models that I 
wiH discuss in this book, the continuation ratio (CR) model and the adja­
cent categories (AC) model, are provided in the indicated columns of 
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Table 4.1. The latter two approaches will be discussed fully in later chapters. 
This chapter focuses on the CO model. 

A simplifying assumption is made of the data when applying ordinal regres­
sion models, and that is the assumption of proportional, or parallel, odds. This 
assumption implies that the explanatory variables have the same effect on the 
odds, regardless of the different consecutive splits to the data, for each cate­
gory of model (CO, CR, AC), as shown in Table 4.1. For example, if the set of 
separate binary logistic regressions corresponding to the CO model described 
above were fit to the data, the assumption of parallelism implies that a com­
mon odds ratio (or effect) for a variable would be observed across all the 
regressions; the effect of an IV on the odds is assumed to be invariant across 
the corresponding splits (Agresti, 1989; Brant, 1990; Menard, 1995; Peterson 
& Harrell, 1990). Thus, one model would be sufficient to describe the rela­
tionship between the ordinal response variable and a set of predictors. 

Both SAS and SPSS provide a score test for the proportional odds 
assumption within their ordinal regression procedures, but this omnibus test 
for proportionality is not a powerful test and is anticonservative (Peterson 
& Harrell, 1990); the test nearly always results in very small p values, 
particularly when the number of explanatory variables is large (Brant, 
1990), the sample size is large (AIIison, 1999; Clogg & Shihadeh, 1994), or 
continuous explanatory variables are included in the model (Allison, 1999). 
Therefore, conclusions about rejecting the null hypothesis of proportional­
ity of the odds based solely on th~ score test should be made cautiously. 
Rejection of the assumption of parallelism (proportional odds) for the 
particular ordinal model being investigated implies that at least one of the 
explanatory variables may be having a differential effect across the out­
come levels, that is, that there is an interaction between one or more of 
the independent variables and the derived splits to the data (Annstrong & 
Sloan, 1989; Peterson & Harrell, 1990). The key is to be able to identify 
which variable(s) may be contributing to rejection of this overall test. 

A reasonable strategy for investigating whether the effects of the inde­
pendent variables are relatively stable or not across the cumulative logits is 
through comparison of variable effects across the separate logistic regres­
sion models that correspond to the ordinal model being considered, as in 
Table 4.1. Although the simplifying assumption of proportionality may be 
useful in tenns of fitting an overall model to the data, it has been recom­
mended that researchers examine the underlying binary models in order to 
supplement q.ecisions about the aptness of an ordinal approach (Brant, 
1990; Clogg & Shihadeh, 1994; Long, 1997; O'Connell, 2000). Infonnal 
comparison of the slopes across the corresponding separate logistic fits for 
a model can provide supportive infonnation regarding the plausibility of 
parallelism for the data. Later in this chapter, an approach that relaxes the 
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TABLE 4.1 

Category Comparisons Associated With 
Three Different Ordinal Regression Model Approaches, 

Based on a 6-Level Ordinal Outcome (j = 0, 1, 2, 3, 4, 5) 

Cumulative Odds Cumulative Odds Adjacent Categories 
(ascending) (descending) Continuation Ratio P(Y=j+lIY=j 
P(Y:=;;j) P(Y;::j) P(Y>jIY;::j) orY=j +1) 

Category 0 versus Category 5 versus Categories 1 through Category 1 versus 
all above all below 5 versus category 0 category 0 

Categories 0 and 1 Categories 5 and 4 Categories 2 through Category 2 versus 
combined versus versus all below 5 versus category 1 category 1 
all above 

Categories 0, 1, and Categories 5, 4, and Categories 3 through Category 3 versus 
2 combined versus 3 versus all below 5 versus category 2 category 2 
all above 

Categories 0, 1,2, Categories 5, 4, 3, Categories 4 and 5 Category 4 versus 
and 3 combined and 2 versus all versus category 3 category 3 
versus all above below 

Categories 0, 1,2,3 Categories 5, 4, 3, Category 5 versus Category 5 versus 
and 4 combined 2, and 1 versus category 4 category 4 
versus category 5 category 0 

proportional odds assumption for some explanatory variables, the partial 
proportional odds (PPO) model (Ananth & Kleinbaum, 1997; Koch, Amara, 
& Singer, 1985; Peterson & Harrell, 1990), is presented. 

EXAMPLE 4.1: Cumulative Odds Model 
With a Single Explanatory Variable 

To illustrate the use of the cumulative odds model, I begin by fitting a 
simple model with just one categorical explanatory variable: gender. 
Table 4.2 provides the frequency of each of the five early-reading 
proficiency categories for boys and girls. The data are unbalanced across 
proficiency categories, with most children, regardless of gender,. falling 
into proficiency category 3. This characteristic of the data can be an impor­
tant consideration when deciding among models (CO, CR, AC, or others) 
that might best represent the data; however, for pedagogical purposes we 
will ignore this characteristic of the data for now, then reexamine its impact 
after the different ordinal models have been presented. 
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The cumulative odds model is used to predict the odds of being at or 
below a particular category. Because there are K possible ordinal outcomes, 
the model actually makes K - 1 predictions, each corresponding to the 
accumulation of probability across successive categories. If we let 
7t(Y :5 jlxp x2' ••• xp) = 7t/'X) represent the probability that a response falls 
in a category less than or equal to the jth category (j = 1, 2, ... K - 1), then 
we have a collection of cumulative probabilities for each case. The final 
category will always have a cumulative probability of 1.0. (Note that in the 
ECLS-K data, I use category 0 to refer to the first category, and the K = 6th 
category is proficiency category 5.) With an extension from the general 
logistic regression model, the predictions are logits for the cumulative 
probabilities, which are referred to as cumulative logits: 

I (1lj{!)) In(Y,.) = In = CXj + (f3} XI + fhX2 + ... {3pXp). 
1 - 7rj{!) 

The cumulative logits associated with being at or below a particular cate­
gory j can be exponentiated to arrive at the estimated cumulative odds and 
then used to find the estimated cumulative probabilities associated with 
being at or below category j. 

Table 4.2 also contains the cross-tabulation of the ECLS-K data in terms 
of actual probabilities (P), cumulative probabilities (cp), and cumulative 
odds (co) for boys and girls of being in category j or below. The bold row 
contains the associated odds ratios (boys:girls) for these data. The last two 
rows of the table provide the category totals and the cumulative proportion 
(P(Y

i
:5 category j) regardless of gender. From the table, we see that the odds 

of being at or below any specific category increases as the response value 
increases, for both boys and girls. This makes intuitive sense, as within the 
sample there are fewer children who are in the highest categories; children 
are more likely to be at or below a given category than beyond that category. 
In general, the odds for boys are always greater than the odds for girls, 
as proportionately fewer boys than girls in the sample reached the higher 
proficiency categories when tested at the beginning of first grade. The odds 
ratios make this pattern clear. The odds that boys are at or below a specific 
category are about 1.72 (on average) times the odds for girls of being at or 
below that category. The likelihood is that girls tend to exceed boys on this 
ordinal meisure of proficiency at the beginning of first grade. 

Similar to the example in Chapter 3, I am going to present results for 
this simple one-variable CO model using three different approaches: 
SAS PROC LOGISTIC, SAS PROC LOGISTIC with a "descending" 
option, and SPSS PLUM (syntax for all models is provided in the 
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TABLE 4.2 

Observed Data Cross-Classification of Gender by Five Proficiency 
Categories; Frequency (f), Proportion (p), Cumulative Proportion (cp), 

Cumulative Odds' (co), and Odds Ratios (OR) 

Category 0 1 2 3 4 5 Totals (f) 
---
Males 

f 48 163 320 735 256 151 1673 

P .0278 .0974 .1913 .4393 .1530 .0903 1.000 
cp .0278 .1261 .3174 .7567 .9097 1.000 
co .0295 .1443 .4650 3.110 10.074 

Females 

f 19 115 274 747 331 206 1692 

P .0112 .0680 .1619 .4415 .1956 .1217 1.000 
cp .0112 .0792 .2411 .6826 .8782 .9999 
co .0113 .0860 .3177 2.1506 7.210 

OR 2.6106 1.6779 1.4636 1.446 1.3972 
Totals (j) 67 278 594 1482 587 357 3,365 

cp(oraI .0199 .1025 .2790 .7195 .8939 1.000 

a. Cumulative odds = Odds(Y, ~ category j). 

Appendix, section B). Figure 4.1 displays the SAS output (with the default 
"ascending" approach) for this simple one-variable cumulative odds model. 
The appropriate link function for the cumulative odds model is the logit 
link. To run this model, I used the SAS syntax in section B 1 of the appen­
dix. The syntax for the other two approaches to the CO model is in sec­
tions B2 and B3. Although these approaches are essentially identical in 
terms of prediction when the CO model is desired, such is not necessarily 
the case with the CR and AC ordinal regression models. It is important to 
be clear on the similarities and differences among programs and 
approaches, beginning with the simplest case of the CO model. 

Using SAS (ascending), the odds are accumulated over the lower-ordered 
categories. That is, the associated predicted cumulative probabilities corre­
spond to the pattern shown in the first column of Table 4.1. SAS is esti­
mating the P(Y ~ category j), which for these data are P(Y ~ 0), P(Y ~ 1), 
P(Y ~ 2), P(Y ~ 3), P(Y ~ 4), and of course P(Y ~ 5) = 1.0 for the final cat­
egory (which typically is not included on printouts of these analyses). A 
reliable CO model would reproduce the cumulative odds and cumulative 
probabilities found from the data in Table 4.2. 

In the models presented here, gender is coded as 0 for girls and 1 for 
boys. Reviewing the output provided in Figure 4.1, we see that the propor­
tional odds assumption is upheld for these data ("Score Test for the 

The LOGISTIC Procedure 

Model Information 

Data Set 
Response Variable 
Number of Response Levels 
Number of Observations 
Model 
Optimization Technique 

WORK. GONOMISS 
PROFREAD 
6 

3365 
cumulative logit 
Fisher's scoring 

Response Profile 

Ordered Total 

Value PROFREAD Frequency 

1 0.00 67 

2 1. 00 278 

3 2.00 594 

4 3.00 1482 

5 4.00 587 

6 5.00 357 

Probabilities modeled are cumulated 
over the lower Ordered Values. 

Model Convergence Status 

Convergence criterion (GCONV=lE-8) satisfied. 

Score Test for the Proportional Odds Assumption 

Chi-Square 
5.3956 

Criterion 
AIC 
SC 
-2 Log L 

DF 
4 

Pr > ChiSq 
0.2491 

Model Fit Statistics 

Intercept Intercept 

OnlY 
10063.980 
10094.586 
10053.980 

and Covariates 

The LOGISTIC Procedure 

10028.591 
10065.319 
10016.591 

R-Square 0.0110 Max-rescaled R-Square 0.0116 

Testing Global Null Hypothesis: BETA=O 

Test Chi-Square DF Pr > ChiSq 

Likeliho~d Ratio 37.3884 1 <.0001 

Score 37.2553 1 <.0001 

Wald 37.2060 1 <.0001 

Figure 4.1 SAS Cumulative Odds Model Example: Gender 
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Figure 4.1 (Continued) 

Parameter 

Intercept 0.00 
Intercept 1.00 
Intercept 2.00 
Intercept 3.00 
Intercept 4.00 
GENDER 

Effect 
GENDER 

Analysis of Maximum Likelihood Estimates 

Standard Wald 
DF Estimate Error Chi-Square 

1 

1 
1 
1 
1 
1 

-4.1049 0.1284 1022.2632 
-2.3739 0.0667 1266.5201 
-1.1474 0.0510 505.4293 

0.7590 0.0485 245.3247 
1.9545 0.0627 971.9783 
0.3859 0.0633 37.2060 

Odds Ratio Estimates 

Point 95% Wa1d 

Estimate 
1.471 

Confidence 
1.299 

Association of Predicted Probabilities 
and Observed Responses 

Percent Concordant 
Percent Discordant 

29.0 
21.1 
49.9 

Somers' D 
Gamma 
Tau-a Percent Tied 

Pairs 4110137 c 

Pr > 

ChiSq 

<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 

Limits 
1. 665 

0.079 
0.159 
0.058 
0.540 

Proportional Odds Assumption"), X2
4 = 5.3956, P = .2491. We can conclude 

that the effect of gender is not statistically different across the five cumula­
tive splits for the data; this implies that if five separate binary logistic mod­
els were fit corresponding to the pattern in Table 4.1, the slopes (and odds 
ratios) for gender in each of these models would be similar. Thus, the gen­
der ORs could be estimated simultaneously using only one model. Because 
gender is the only variable included here, this result also tells us that the 
five ORs in Table 4.2 are not statistically different, and that one common 
OR could be used to summarize the effect of gender on proficiency. 

The pseudo R2 statistics are found in the "Model Fit Statistics" section of 
the printout (Figure 4.1), in the line under "The LOGISTIC Procedure," 
with the Cox and Snell R2 cs = .0110 and the Nagelkerke (which SAS refers 
to as Max-rescaled R-Square) R2 N = .0116. The likelihood ratio R2 L = .0037 
can be calculated using the -210glikelihood statistics for the intercepts-only 
model and the intercepts plus covariates model information contained in the 
"Model Fit Statistics" summary table. Collectively, these R2 statistics sug­
gest that the relationship between the response and predictor variables is a 
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weak one. However, the tests for overall model fit ("Testing Global Null 
Hypothesis"), which assess whether the fitted model improves predictions 
over those presented by the null (intercepts-only) model, are all statistically 
significant, so we reject the null model in favor of the model that includes 
gender as a predictor. Despite the low pseudo R2 values, the likelihood ratio 
test suggests that the pattern of cumulative proportions for boys and girls as 
predicted from the model (see Table 4.3; entries explained later) provides a 
better match to the actual cumulative proportions for boys and girls (shown 
in Table 4.2) than what would be expected disregarding gender (last row of 
Table 4.2). This simple CO model makes clear how these proportions are 
different for boys versus girls. 

The next section of the printout (Figure 4.1) contains ''Analysis of 
MaXimum Likelihood Estimates;' a table with five intercepts, referred to 
as threshold parameters: one for each of the K - 1 cutpoints. It is useful to 
think of these thresholds as marking the point (in terms of a logit) at which 
children might be predicted into the higher categories, but they are not 
usually interpreted individually, sinlilar to how the intercept functions in an 
ordinary multiple regression model. However, with dummy coding for gender 
(gender = 0 for girls), these threshold estimates represent the predicted logits 
corresponding to Y::;; category j for girls. The effect of gender on the logit 
is .3859, with an associated odds ratio of 1.471 (exp(.3859) = 1.471). The 
model informs us that the odds for boys of being at or below category j are 
about 1.471 times the odds for girls, regardless of which cumulative 
split we are considering. This result can be compared with the pattern we 
saw using the observed data in Table 4.2, where the average OR across 

TABLE 4.3 

Predicted Cumulative Logits, Estimated Odds of 
Being at or Below Category j for Boys and Girls, 

Estimated Cumulative Probabilities (cp), and Estimated 
Odds Ratios From the CO Model (SAS With Ascending Option) 

Comparison (Y ~O) (Y ~l) (Y ~2) (Y ~3) (Y ~4) 

Boys 
Cumulative logit -3.719 -1.988 -.7615 1.1449 2.3404 
Cumulative odds .02427 .13696 .4670 3.1421 10.385 

A .0237 .1205 .3183 .7586 .9122 CPt, 

Girls 
Cumulative logit -4.1049 -2.3739 -1.1474 .7590 1.9545 
Cumulative odds .0165 .0931 .3175 2.1363 7.0604 

A 
.0162 .0852 .2410 .6811 .8760 CPg 

OR 1.4711 1.4711 1.4709 1.4708 1.4709 
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categories was 1.72. According to the model, boys are less likely to be beyond 
a particular category relative to girls, which is consistent with the actual data. 
Recall that this model assumes that the effect of gender is constant across 
the separate cumulative splits. Because we did not reject the assumption of 
proportional odds when gender was included as a predictor, the CO model 
suggests that the separate ORs for the cumulative splits (Table 4.2) are not 
statistically different from the OR of 1.471 found for the CO model. 

Thrning to a direct interpretation of the parameter estimates for the 
model, the intercepts and the effect of gender can be used to estimate the 
cumulative odds, that is, the odds of being at or below a given category for 
boys and for girls. These also can be used to estimate the ORs at each split, 
although we already know from our analysis that this is set at 1.471. The 
cumulative odds estimated for boys and girls can be compared back to those 
derived from the original data (Table 4.2). Predictions for girls, when 
gender = 0, correspond to the intercepts for each cumulative category, 
which when exponentiated provide the odds for girls of having a response 
at or below category j. Predictions for boys are found by substituting the 
value of gender = 1 into the cumulative odds model for each respective 
equation and exponentiating to find the odds: In(~) = aj + .3859(gender). 
For example, for the logit representing Y::;; 0, the predicted logit for girls is 
-4.1049; for boys, the predicted logit is -3.719. Table 4.3 provides these 
estimated cumulative logits based on the model as well as the estimated 
cumulative odds (co) for boys and girls (exp(cum. logit)). From these pre­
dicted cumulative odds, odds ratios comparing boys to girls can be found 
easily for each category, and these are shown in the last row of Table 4.3 
(e.g., COboy/COgirIS). Within rounding error, the ORs are all approximately 
1.47. The estimated cumulative odds are transformed into the estimated 
cumulative probabilities (cp) using cp = (co/[l + co]), which yields P(Y::;; cat­
egory ]). The results are shown in Table 4.3 and can be compared with the 
observed cumulative probabilities presented in Table 4.2. Overall, the esti­
mates seem to match the data well; recall that the likelihood ratio test was 
statistically significant for this model. 

The model predictions make it clear what the assumption of proportional 
odds means for these data. The OR is fixed, and therefore remains constant 
across all cumulative categories, implying that overall, the odds for boys of 
being at or below any category j are about 1.47 times the odds for girls of 
being at or below category j. For this sample, boys are more likeiy than girls 
to be at or below any given category; girls are more likely than boys to be 
in higher categories. Gender (male = 1) has a positive effect (b = .3859) on 
the cumulative logit, corresponding to larger odds of being at or below cat­
egory j for boys relative to girls. This last interpretation is consistent with 
the transformed outcome being modeled in this approach (response at 
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or below category j), and hence the interpretation of the direction of the 
logit and the effects of explanatory variables hinge on how the outcome is 
characterized. 

Differences between estimated and actual cumulative probabilities 
are due to the fact that the CO model is imposing a very specific structure 
on the data. This structure is evidenced through the behavior of the ORs, 
and thus it affects the cumulative proportions estimated from the model as 
well. The estimates for the cumulative probabilities are derived under the 
assumption of proportional odds. Although we saw earlier that this assump­
tion is valid for our data across gender, it is important to recognize that the 
model estimates and the predicted probabilities are driven by this assump­
tibn. In situations where the assumption does not hold or seems empirically 
or theoretically implausible, these predicted probabilities could be grossly 
inaccurate. Unfortunately, when models become more complex, such as 
those that include additional explanatory variables, either categorical or 
continuous, it can become quite challenging to have confidence in the 
assumption of proportional odds. I will return to this topic toward the end 
of this chapter. 

Somers' D for this analysis was .079 (see last section of Figure 4.1), 
which is quite low. With only one predictor, we are getting very weak con­
cordance for the ordinal direction of predicted probabilities among pairs of 
children. To construct the classification table for the measures of predictive 
efficiency, 'tp and Ap' we can use the collection of cumulative predicted prob­
abilities for each child to assess where individual probability of category 
membership is at its maximum. With the ''predprobs = cumulative" option 
specified in the output subcommand, SAS creates a data file containing the 
cumulative probabilities for the ith child at each level, CpOi = P(at or below 
level 0), cpl; = P(at or below level 1), and so on. Thus, each child has K 
new observations in the data set, with cp5; = P(at or below level 5) = 1.0 
for all children. Category probabilities can be found by using the relation­
ship P(Y = category j) = P(Y::;; category j) - P(Y.::;; category U - 1]). That is, 
P/Y = 0) = cpO;; P;(Y = 1) = cpli - cpO;; PlY = 2) = cp2; - cpl;; and so on. 
The maximum category probability for an individual child corresponds to 
his or her best prediction for proficiency level. In the gender-only, ascend­
ing model, all children are predicted into category 3, which is not surprising 
given that the model has weak fit and category 3 represents 44% of the 
children ii\ this sample. Following the methods outlined in Chapter 3, the 
classification estimates can be tabled to the observed proficiency categories 
to calculate measures of predictive efficiency. For this analysis, 'tp and \ are 
.23 and 0, respectively. These results underscore the need to conSIder several 
different measures of association in conjunction with the likelihood ratio 
tests when assessing the reasonableness of a model. 
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Table 4.4 provides a comparison of the results for the SAS model just 
described, based on the "ascending" default option in the ordering of the 
ordinal dependent variable, with the results from SAS "descending," SPSS 
PLUM, and a multiple regression model with gender as the only predictor. 
Although the CO models are essentially the same and provide the same 
interpretation of the effect of gender, some important similarities and dif­
ferences in the presentation of the results for these models should be 
pointed out. 

First, similar to the results using the ascending and descending options in 
SAS PROC LOGISTIC with a dichotomous outcome, the estimates for the 
threshold (intercept) parameters are reversed in sign but not in magnitude; 
they also appear in reverse order on the printout. This is simply due to the 
fact that the descending and ascending options predict complementary 
events. With the descending option in place, the model is estimating the 
(reversed) cumulative odds, that is, P(Y ~ 5), P(Y ~ 4), P(Y ~ 3), P(Y ~ 2), 
and P(Y~ 1), and of course P(Y~ 0) will always equal 1.0. 

TABLE 4.4 

Results for Cumulative Odds Model Using 
SAS (Ascending), SAS (Descending), SPSS PLUM, and 

Multiple Linear Regression on an Ordinal Response Scale: 
Proficiency (j == 0, 1, 2, 3,4, 5) by Gender, N == 3,365 

Model estimates 
Intercept a 
Thresholds 

gender = 1 (male) 
gender = 0 (female) 
R2 

Score testb 

Model fit" 

a. R\ = likelihood ratio R'. 

SAS 
(ascending) 

P(Y~cat.j) 

1Xo=-4·105 
a l =-2.374 
U:! = -1.147 
~=0.759 
a4 = 1.955 

.386** 

.004-
X2. = 5.3956 
(p= .2491) 

X21 =37.388 
(p < .001) 

b. For the proportional odds assumption. 

SAS 
(descending) 

P(Y;Z cat.]} 

Us =-1.955 
a 4 =-O·759 
~ = 1.147 

U:! =-2.374 
a l =4.105 
-.386** 

.004-
X2

4 = 5.3956 
(p = .2491) 

X21 = 37.388 
(p < .001) 

SPss 
PLUM 

P(Y~ cat.]} 

60 =-3.719 
61 =-1.988 
62 =-.762 
63 = 1.145 
6.=2.340 

0 
.386** 
.004" 

X2
4 = 5.590 

(p = .232) 
X21 =37.388 

(p < .001) 

SPSS 
REGRESSION 

E(YIX) 
3.108 

-.246** 

.012 

Fl. 3363 = 
40.151 

(p < .001) 

c. Likelihood ratio test for ordinal models; F test for ordinary least squares (OLS) regression. 

**p < .01. 
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Second, the score test for the proportional odds assumption indicates that 
the assumption of proportionality is upheld across the analyses, X2

4 
= 

5.3956, p > .05, as would be expected, although SPSS refers to this as the 
"Test of Parallel Lines.,,9 For all three models, the omnibus likelihood ratio 
tests indicate that the ordinal gender model fits better than the null, X2 I = 
37.388, p < .001. 

Third, predictions of the cumulative odds and cumulative proportions 
using SAS ascending and SPSS PLUM are exactly the same; and the pre­
dictions for the cumulative odds for SAS descending yield the comple­
ments of these probabilities. Recall that for SPSS PLUM, the model 
predictions are found by subtracting the effect of gender from the threshold 
estimates. SPSS PLUM also uses an internal coding system for the cate­
gorical predictors. For example, to estimate the cumulative probability for 
a girl having a proficiency response less than or equal to 2 using the PLUM 
model, we would (a) find In(odds(Y::S; 2) = fJ 2 - f3(gender=O) = -.762 - (.386) 
= -1.148; (b) exponentiate to find the odds, exp(-1.148) = .3173; and 
(c) use these odds to find the cumulative probability for a girl, P(Y::s; 2) = 
.3173/(1 + .3173) = .2409, consistent with the SAS ascending results used 
for Table 4.3. To clarify the approach of SAS with the descending option, 
consider the complement of Y::s; 2 girls' that is, Y ~ 3 girls' Using the parameter 
estimates for the descending model in Table 4.4, we have cumulative 
loggirls. Y~3 = <X3 + (-.386) x gender = + 1.147 (because gender = 0 for girls). 
Then the cumulative oddsgirls. 'Y~ 3 = exp(1.147) = 3.149. The estimated 
probability is P(Y ~ 3)girls = 3.149/(1 + 3.149) = .759. This is the comple­
mentary probability to P(Y ::s; 2) using either SAS ascending or SPSS 
PLUM; from Table 4.3, 1 - .2410 = .759. 

Fourth, as mentioned previously, all these programs can be asked to save 
estimated probabilities, which then can be compared easily (at least for 
models with a small number of predictors) with those for the original data. 
When running a CO model, SAS will calculate and save the cumulative 
probabilities, according to how you requested them (ascending or descend­
ing). SPSS PLUM, however, does not make the cumulative probabilities 
available directly, but instead calculates and saves the individual's category 
membership probabilities. As shown just above, the cumulative probabili­
ties can be determined readily from the parameter estimate information 
provided for any of the three models. 

Intef]J.retations across the three models are identical, although the 
actual -Jalues of the thresholds and slopes are not similar between SPSS 
PLUM and SAS (ascending or descending). This is simply due to how the 
two packages parameterize the model being fit. Differences between the 
SAS ascending and descending approaches are seen readily in the rever­
sal of signs and subscripts marking the thresholds. The cumulative odds 
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for the descending approach are the odds of being at or beyond a particular 
proficiency level; the cumulative odds for the ascending approach and for 
PLUM are the odds of being at or below a particular proficiency level. The 
thresholds appear in reverse order on the output between the two SAS 
approaches, but once the predicted logits are tnl11sformed to cumulative 
probabilities, the results are essentially equivalent. The effect of gender is 
reversed in sign for the two SAS models, and in PLUM the gender effect 
corresponds to the case gender = 0, but the interested reader is urged to use 
these simple models to verify equivalence in predicted probabilities once 
the characterization of the model and the cumulative probabilities being 
derived are accounted for. An example of the treatment of gender across 
the three models is provided in the paragraphs to follow. 

In SPSS PLUM, the threshold estimates are for the case when gender = 
1 (males), whereas in SAS, the threshold estimates are for the case when 
gender = 0 (females). Regardless of the analysis used, the effect of gender 
is constant across all cumulative splits, b = ±.386. For example, using SAS 
(ascending), the logit prediction for boys being in proficiency level 2 or 
lower is <X2 + b d (b ) = -1.147 + .386 = -.761. This is equivalent to the 

gen er oys 
prediction for boys following the SPSS PLUM analysis: 82 - b gender(boys) = 
-.762 - 0 = -.762. Exponentiating to find the cumulative odds and trans­
forming the results to find predicted probability for boys of being at or 
below proficiency level 2, we have P(Y ~ 2) = .318 (see Table 4.3). The 
odds ratios for boys:girls across all cumulative splits are assumed constant 
based on the proportional odds model and are equivalent for SAS (ascend­
ing) and SPSS PLUM: exp(.386) = 1.47; this indicates that the odds for 
boys of being at or below any category j are 1.47 times the odds for girls of 
being at or below any category j. 

Using the SAS (descending) approach, we can say that the odds for boys 
being in category j or beyond relative to girls are constant across all cumu­
lative splits: exp(-.386) = .680, which implies that boys are less likely than 
girls to be at or beyond a given proficiency level. Interpreted slightly differ­
ently, this result shows that the odds for boys are .68 times the odds for girls 
of being at or beyond any category j. Girls are more likely to be in higher 
proficiency categories. Note that the odds ratios for either approach (ascend­
ing or descending) are inverses of each other: 11.68 = 1.47. Note also that the 
probability predictions for boys being at or below category j, for example, 
can be determined from the SAS (descending) model as well, b~cause P(Y ~ 
j) = 1 - P(Y 'Lj + 1). As another example of this process, to find P(Y ~ 2) 
for boys, we can use the descending model to find the cumulative logit for 
Y'L 3 for boys, <X:; + bgender(boys) = 1.147 + (-.386) = .761; exponentiating 
and solving for cumulative probability, we find P(Y 'L 3) = .682; finally, 
1 - .682 = P(Y ~ 2) = .318, consistent with results shown in Table 4.3. 

41 

When results of these models are compared to the multiple regression 
(MR) analysis, we see a similar pattern in terms of boys being below girls 
in proficiency. The dependent variable of proficiency in this MR analysis is 
coded to be increasing in value from 0 to 5. The slope for the gender vari­
able (boys = 1) is negative, -.246. On average, girls are predicted to be at a 
proficiency level of 3.109, whereas boys are predicted to be at a lower pro­
ficjency level of (3.109 - .246) = 2.863. Although globally there are simi­
larities between the ordinal models and the MR model in terms of direction 
of the effect of gender, the predicted outcomes from the MR model are not 
consistent with the data we are analyzing. A mean proficiency score is not 
the value we wish to predict when our response values are strictly ordinal; 
furthermore, the MR model does not allow us to make classification state­
ments where we might compare across the different proficiency levels. 

EXAMPLE 4.2: Full-Model Analysis of Cumulative Odds 

The analyses thus far indicate that the one-variable model could be impro­
ved upon. The predicted probabilities for the gender-only model under the 
proportional odds assumption are very similar to the actual cumulative pro­
portions, and the likelihood ratio test results indicate that the cumulative 
probabilities when gender is included in the model are more consistent with 
the actual data than the null model (without gender). The R2 statistics were 
very small, as were Somers' D and the measures of predictive efficiency. We 
now turn to the derivation of a more complex cumulative odds model to 
determine the relationship between additional explanatory variables and the 
cumulative probabilities across the six proficiency levels. Table 4.5 provides 
a summary of results for the fitting of the CO model with eight explanatory 
variables from Table 2.2 (recall that public is a school-level variable and will 
not be used in these single-level models). The results in Table 4.5 were 
obtained using SAS with the descending option; the probabilities being 
modeled are P(Y 'L category j). This approach was taken to facilitate later 
comparison with the CR and AC ordinal models. The syntax for the full CO 
model is contained in Appendix B, section B4. 

The proportional odds assumption for this model is not upheld, as can be 
seen in the row of Table 4.5 labeled "score test." This suggests that the 
pattern of eVects for one or more of the independent variables is likely to be 
different across separate binary models fit according to the pattern 
indicated earlier for the CO model in Table 4.1. Unfortunately, with continu­
ous predictors and large sample sizes, the score test will nearly always indi­
cate rejection of the assumption of proportional odds, and therefore should be 
interpreted cautiously (Allison, 1999; Greenland, 1994; Peterson & Harrell, 
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TABLE 4.5 

Full-Model Analysis of Cumulative 
Odds (CO), SAS (Descending) (Y;::: cat. j), N = 3,365 

Variable 

as 
a4 

~ 
ex,. 
~ 
gender 
famrisk 
center 
noreadbo 
minority 
halfdayK 
wksesl 
plageent 
R2 

L 

Cox & Snell R2 
Nagelkerke R2 
Somers'D 

tp 

Ap 
Model fit" 
Score test" 

a. Likelihood ratio test. 
b. For the proportional odds assumption. 
*p < .05; **p < .01. 

b (se(b» 

-6.01 (.54) 
-4.73 (.53) 
-2.62 (.53) 
-1.30 (.53) 

.50 (.54) 
-.50 (.06)*' 
-.26 (.08)*' 

.09 (.08) 
-.32 (.09)*' 
-.15 (.07)' 
-.17 (.07)* 
.71 (.05)*' 
.06 (.01)** 

.05 

.14 

.15 

.33 

.21 

.00 
X2

8 = 524.17 (p < .0001) 
X\2 = 75.47 (p < .0001) 

OR 

.607 

.771 
1.089 
.729 
.862 
.847 

2.042 
1.063 

1990). We will return to an examination of this assumption later; for now, let 
us interpret what the model estimates and fit statistics mean for this analysis. 

The model fit chi-square indicates that this full model is performing 
better than the null model (no independent variables) at predicting cumula­
tive probability for proficiency. We see some improvement in the likelihood 
ratio and pseudo R2 statistics, but not much more than what was obtained 
using the gender-only model. Somers' D is .333, which is markedly better 
than what was obtained through the gender-only model. 

Recall that proficiency was measured through six categories with 
outcomes as 0, 1,2, 3, 4, or 5. With the descending option, the threshold 
estimates in Table 4.5 correspond to predictions of the cumutative logits 
for students who have a score of 0 on the complete set of independent 
variables; a

5 
corresponds to the cumulative logit for Y;::: 5, a4 corresponds 

to the cumulative logit for Y ;::: 4, and so on, until a l corresponds to the 
cumulative logit for Y;::: 1. Because all students will have Y;::: 0, this first 
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threshold is not included in the descending cumulative logit model (note 
that the same is true for Y ~ 5 for the ascending cumulative logit model). 

The effects of the independent variables within the full CO model shed 
some important light on how variables contribute to the probability of being 
at or beyond a particular category. Consistent with the earlier gender-only 
model, boys are less likely than girls to be beyond a particular category 
(OR = .607). The presence of any family risk factor (jamrisk, OR = .771), 
having parents who do not read to their children (noreadbo, OR = .729), 
being in a minority category (minority, OR = .862), and attending half-day 
kindergarten rather than full-day kindergarten (haldayK, OR = .847) all 
have negative coefficients in the model and corresponding ORs that are 
significantly less than 1.0. These characteristics are associated with a child 
being in lower proficiency categories rather than in higher categories. On 
the other hand, age at kindergarten entry (plageent, OR = 1.063) and 
family S~S (wksesl, OR = 2.042) are positively associated with higher 
proficiency categories. The slopes for both variables are positive and 
significantly different from zero in the multivariable model. Attending 
center-based day care prior to kindergarten (center) is not associated with 
proficiency in this model; the slope is small, and the OR is close to 1.0 . 
These findings are consistent with the literature on factors affecting early 
literacy, and as such the full model provides a reasonable perspective of the 
way in which these selected variables affect proficiency in this domain. 

In terms of predictive efficiency, ,neither 't or A offers better category 
predictions relative to the gender-only model,P which classified all children 
into category 3. For the full-model CO analysis, the cumulative probabili­
ties can be used to determine individual category probabilities as described 
in the gender-only analysis, with the maximum category probability corre­
sponding to the best proficiency level prediction for each child. Table 4.6 
provides the results of the classification scheme based on the full CO 
model. Most of the children are still classified into proficiency level 3, 
and we can determine from the classification table (using the formulas 
presented in Chapter 3) that 'tp = .23 and Ap = 0, indicating no overall 
improvement in predictions from the gender-only analysis. This would be 
discouraging if category prediction was the sole goal of the model. 
However, as mentioned in the binary logistic regression example, these 
measures tell us very little as to how the explanatory variables are affecting 
estimates of cumulative probability across the proficiency levels. Hosmer 
and Lemesh<Ww (2000) remark that classification is very sensitive to group 
size and "always favors classification into the larger group, a fact that is 
independent of the fit of the model" (p. 157). For model fit, the results 
of the omnibus likelihood ratio test and the Wald tests for contribution of 
each IV in the model should be preferred. Nonetheless, in some research 
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TABLE 4.6 

Classification Table for Full CO Model, N = 3,365 

PredcatO Predcatl Predcat2 Predcat3 Predcat4 Predcat5 Totals 

profread 

0 0 9 57 0 0 67 
1 2 12 262 0 1 278 

2 0 3 24 565 0 2 594 
3 1 3 24 1,428 0 26 1,482 
4 0 577 0 8 587 
5 0 0 0 332 0 25 357 

Totals 2 10 70 3,221 0 62 3,365 

situations, reliability in classification may be an important component of 
model selection criteria; this example demonstrates how these statistics are 
calculated, as well as how much they can be influenced by group sample size. 

Assumption of Proportional 
Odds and Linearity in the Logit 

Within an ordinal model, linearity in the logit cannot be assessed directly, 
and "only if linear relations between the logits and the covariates are estab­
lished in the separate binary logistic models [is] a check of the proportional 
odds assumption ... meaningful" (Bender & Grouven, 1998, p. 814). Thus, 
this assumption was investigated for each of the five binary models to pro­
vide support for the ordinal model. Linearity in the logit was examined for 
the continuous variables using the Box-Tidwell method (Hosmer & 
Lemeshow, 1989; Menard, 1995) and by graphical methods (Bender & 
Grouven, 1998). For Box-Tidwell, multiplicative terms of the form X x In(X) 
are created for the continuous explanatory variables and added to the main 
effects models. Statistically significant interaction terms are an indication 
that linearity may not be a reasonable assumption for that variable. To look 
at linearity graphically, deciles can be created for the continuous explanatory 
variables, then plotted against the proportion of children in the "success" 
category for each binary logit (at or beyond category j). Both approaches 
were taken for the two continuous variables in the models looked at here: 
age at kindergarten entry (plageent) and family SES (wksesf). The graphs 
revealed a linear trend, but the Box-Tidwell method indicated nonlinearity 
for the two continuous variables in all five binary logits. Given the graphical 
pattern, large sample size, and sensitivity of the statistical tests, linearity in 
the logit was assumed plausible for both continuous variables. 
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For the full CO model, the score test for the assumption of proportional 
or parallel odds was rejected. This means that there are some independent 
variables for which the odds of being at or beyond category j are not stable 
across proficiency levels asj changes. Table 4.7 (values have been rounded 
to save space) provides the results of five separate binary logistic regres­
sions, where the data were dichotomized and analyzed according to the pat­
tern in the second CO column of Table 4.1. That is, each logistic model looks 
at the probability of being at or beyond proficiency level j. For these logis­
tic models (using SPSS), the grouping of categories coded 1 corresponds to 
children who were at or beyond each successive category, and the code of 0 
is used for children below each successive category. 

Reviewing the results of the separate logistic models in Table 4.7, rela­
tive to the results of the CO model in Table 4.5, we see that all five binary 
models fit the data well. The model X2's are all statistically significant, indi­
cating that each model fits better relative to its corresponding null model; 
and the H-L tests are all not statistically significant, indicating that 
observed to predicted probabilities are consistent. 

Now let us look at the patterns of slopes and ORs for each explanatory 
variable across these five models. The effect of gender, after adjusting for 
the other independent variables, does seem to have a dissimilar pattern 
across the five separate logistic regression splits. Although the average gen­
der slope for these five regressions is -.604, which is somewhat close to the 
gender slope from the multivariable CO model (-.500), the odds ratio for 
boys to girls of being at or beyond proficiency level I (.354) are somewhat 
lower relative to the other four comparisons (.552, .625, .631, and .635, 
respectively). Note, however, that if we compare the OR for the averaged 
gender slopes from these binary models, exp(-.604) = .547, to the single 
gender OR from the CO model of .607, we see little difference, on average. 
Directionally and on average, the effect of gender is similar across the five 
logistic regressions. This is true for all the explanatory variables in the 
model, with the exception of the effect of minority. Notice that the direc­
tion of the effect of minority changes between the first three analyses and 
the last two. In the first three analyses, the odds are less than 1.0, suggest­
ing that minority children, relative to nonminority children, are more likely 
to be in the lower proficiency categories. However, there is no difference in 
the likelihood of being at or beyond proficiency category 4, because the OR 
is not statistically different from 1.0. The last analysis compares children in 
categories b through 4 with children in category 5. Here we see that minor­
ity children are more likely than nonminority children to be in category 5 
(b = .238, OR = 1.268) after adjusting for the presence of the other explana­
tory variables in the model. This result was not apparent through the cumu­
lative odds model. The CO model provides summary estimates of the effect 
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TABLE 4.7 of a variable across all cumulative proficiency-level dichotomizations or 

Associated Cumulative Binary Models for the CO Analysis (Descending), splits to the data. The imposition of the assumption of proportionality of the 

Where CUMSP
j 

Compares Y < cat. j to Y 2: cat. j, N == 3,365 odds across these splits does not seem to be valid for the minority variable. 

CUMSP, CUMSP2 
CUMSP3 

CUMSP4 CUMSPs 
For all other explanatory variables in the model, the direction and average 

b b b b b magnitude of the slopes and the ORs corresponds well to the CO results. 

(se(b)) (se(b)) (se(b)) (se(b)) (se(b)) Score Test' Unfortunately, the score test for the proportional odds assumption is very 

Variable OR OR OR OR OR P value sensitive to sample size and the number of different possible covariate pat-

Constant 3.53 -.55 -2.15** --4.67** -7.34** terns, which will always be very large when continuous explanatory variables 

(2.11) (.99) (.68) (.68) (.99) are used. If the assumption is not rejected, the researcher should feel confi-

gender -1.04 -.60 -.47 -.46 -.46 .249 
dent that the overall CO model represents the pattern of ORs across the sep-

(.28) (.12) (.08) (.08) (.12) arate cumulative splits very well. If the assumption is not upheld, however, 

.35* .55* .63* .63* .64* good practice dictates that the separate models be fit and compared with the 

famrisk -.15 -.25 -.21 -.33 -.28 .450 
CO results to check for discrepancies or deviations from the general pattern 

(.29) (.13) (.09) (.10) (.15) suggested by the CO model (e.g., Allison, 1999; Bender & Grouven, 1998; 

.87 .78 .81* .72* . 76 Brant, 1990; Clogg & Shihadeh, 1994; Long, 1997; O'Connell, 2000) . 

center -.03 -.10 .10 .10 .26 .219 
To provide an additional check on the plausibility of the proportionality 

(.28) (.14) (.09) (.10) (.16) assumption, separate score tests unadjusted for the presence of the other 

.97 .91 1.10 1.10 1.30 covariates in the cumulative odds model can be reviewed for each of the 

noreadbo -.65 -.36 -.28 -.28 -.50 .095 
explanatory variables. In light of the large sample size, a .01 level of sig-

(.27) (.14) (.10) (.12) (.21) nificance was used to guide decisions regarding nonproportionality. For 

.52* .70* .75* .76* .61* each of the single binary models, the score test for the assumption of pro~ 

minority -.23 -.42 -.39 .09 .24 .000 
portional odds was upheld, with the exception of minority and family SES 

(.29) (.13) (.09) (.09) (.13) (wksesf). The p values for these unadjusted tests are presented in the final 

.80 .66* .68* 1.09 1.27* column of Table 4.7. Across the five binary logit models, the ORs for 

halfdayK .07 -.00 -.11 -.26 -.11 .033 
wksesl are approximately 1.9 or larger, indicating that higher-SES children 

(.26) (.12) (.08) (.08) (.12) are at least twice as likely as lower-SES children to be in the higher profi-

.93 1.00 .89 .77* .89 ciency categories. Given the fact that SES is continuous, the magnitude of 

wksesl 1.00 .77 .73 .64 .87 .000 
the difference in ORs across the binary splits seems to be negligible and as 

(.17) (.10) (.07) (.06) (.08) such, a common OR may be a reasonable assumption for this variable. As 

2.73* 2.17* 2.07* 1.89* 2.39* mentioned above, however, the pattern of change in the ORs for the minor-

plageent .02 .05 .06 .06 .08 .645 
ity variable may clearly be relevant to the study of proficiency, and the 

(.03) (.02) (.01) (.01) (.02) effects of this variable should be examined more closely. Although not pro-

1.03 1.06* 1.06* 1.06* 1.08* vided here, follow-up analyses including interactions among the predictors 

R2 .125 .097 .092 .070 .096 
or using a variable for separate categories of race/ethnicity rather than an 

L overall assignment to a minority category could be used to better explain 
R2 .136 .128 .149 .115 .128 

N the effects seen in the five binary logit models. 
Model X2s 82.11** 215.49** 366.40** 280.39** 217.92** 

H-U x2s 7.80 10.43 13.41 . 74 9.16 . 
t 

a. Score test for each IV, unadjusted (no other covariates in the model). Alternatives to the Cumulative Odds Model 
b. Hosmer-Lemeshow test, all n.s. 

*p < .05; **p < .01. 

Recall that the best use of the cumulative odds model is to provide for a 
single parsimonious prediction model for the data. However, if the restriction 
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of equal slopes is not realistic, it is incumbent upon the researcher to work 
toward explaining how the data are behaving rather than forcing the data to 
conform to a particular model. There are several alternatives available 
if, after review of the separate logistic regression analyses and checks on 
linearity and proportionality, the overall assumption of proportionality in 
the multivariate ordinal model is deemed suspect. 

If variable effects are of primary importance, the researcher may decide 
to work with the separate logistic regressions to explore and explain diver­
gent explanatory variable patterns across the different cumulative models 
(Bender & Grouven, 1998). This decision depends on the researcher's 
overall goals for the analysis and clearly may not be appropriate for every 
situation or research question. If a parsimonious model or a single set of 
predicted probabilities is desired, these separate binary logits will not 
provide it. Alternatively, the researcher may decide to forfeit the ordinal 
nature of the DV altogether and to fit a multinomial model to the data. This 
approach may provide some meaningful information in terms of overall 
variable effects and classification, but it neglects the ordinal nature of the 
outcome and thus disregards an important aspect of the data. This option, 
too, may not be optimal for the researcher's goal, but it should be consid­
ered if the researcher believes that the majority of the explanatory variables 
are contributing to the violation of the proportional odds assumption. See 
Borooah (2002), Ishii-Kuntz (1994), and Agresti (1990,1996) for examples 
and discussion of these alternative multinomial approaches. 

A third option, and the focus of later chapters in this book, is to consider 
other types of ordinal regression analyses, such as the continuation ratio 
method or the adjacent categories method, to try and obtain a single well­
fitting and parsimonious model that would aid in our understanding of the 
data at hand. Chapter 5 demonstrates the use of the CR or continuation ratio 
model, and Chapter 6 presents the AC or adjacent categories model. 

Before turning to a discussion of these additional strategies for analyzing 
ordered outcomes, one additional method will be presented. In situations 
where proportionality is questionable based on the behavior of only a 
subset of the explanatory variables, researchers may opt to fit what are 
called partial proportional odds (PPO) models (Ananth & Kleinbaum, 
1997; Koch et al., 1985; Peterson & Harrell, 1990). In essence, PPO mod­
els allow for an interaction between an independent variable and the differ­
ent logh comparisons, which clarifies how the odds for an IV. may change 
across the levels of the outcomes being compared. SAS currently estimates 
PPO models using PROC GENMOD. The analysis requires data restructuring 
to reflect whether or not an individual is at or beyond a particular response 
level (Stokes, Davis, & Koch, 2000). In the restructured data set, a new 
binary response for each person for each ordered logit comparison is 
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created to indicate whether or not that person is at or beyond each particular 
response level. For example, with a K-category ordinal response variable, 
each person would have K - 1 lines in the restructured data set. The new 
outcome variable of interest is derived to indicate, for each of the K - 1 log­
its, whether or not the person was at or beyond category K (excluding the 
lowest category (Y = 0), which all children are at or beyond). Because the 
data are now correlated (repeated observations among persons), generalized 
estimating equations (GEE) are used to fit the nonproportional model and 
then the partial proportional odds model. The use of the GEE approach 
(Liang & Zeger, 1986) is particularly well suited to the study of repeated 
measurements over time when the outcomes of interest are categorical 
(nominal or ordinal). It is based on large-sample properties, which means 
that the sample size has to be sufficient enough to produce reliable 
estimates. Stokes et al. (2000) suggest that two-way cross-classifications 
of the data should yield observed counts of at least five. With continuous 
explanatory variables, this typically will not be the case, so the sample size 
should be considered carefully. 

EXAMPLE 4.3: Partial Proportional Odds 

Using the ECLS-K example to demonstrate, we can release the assumption 
of proportional odds for the minority variable and refit the model in an 
attempt to better reflect the pattern seen in Table 4.7. That is, the assumption 
of proportional odds is retained for all variables in the model except for 
minority. The syntax for the PPO model, including the restructuring of the 
data set, is included in Appendix B5, following the process outlined by 
Stokes et al. (2000). Figure 4.2 presents the (edited) printout for this analy­
sis. GENMOD models the probability that a child is at or beyond category j, 
but because the odds ratios are kept constant across all splits for each vari­
able except minority, the results include only one intercept parameter. The 
threshold values are found by adding the estimates for each correspond­
ing split, which are included toward the middle of the "Analysis of GEE 
Parameter Estimates" table in Figure 4.2. When reviewing this table, note 
that the explanatory variable coding scheme uses the "0" category for the 
categorical variables as the referent. For example, the slope for gender, b = 
.5002, is provided for girls (gender = 0) rather than for boys (gender = 1). 

The interctpt (-6.9805) is the log-odds that a child would be at or beyond 
proficiency category 5 (Y ~ 5) if all his or her covariate scores were 1, or 0 
if continuous; note that the coding of categorical variables follows an inter­
nally constructed pattern and that the estimate for split 5 is 0.00. To find the 
log-odds for Y ~ 4, the threshold would be the intercept plus the effect for 
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split 4 (-6.9805 + 1.2670 = -5.7135). The other threshold estimates may be 
found similarly. 

The GEE analysis provides a score statistic for testing the contribution of 
each explanatory variable to the model; these are found at the end of the 
output. Results of the score tests indicate that the effect of minority for the 
:fifth logit comparison is just marginally statistically significant, X2

J = 4.04, 
p = .0445, yet its interaction with the split variable is strongly significant 
overall, X24 = 28.80, p < .0001. This result suggests that there are reliable 
differences in the effect of minority depending on split. For the other 
explanatory variables in the model, all effects are statistically significant 
except attendance at a daycare center (center), consistent with what was 
found in the full cumulative odds model. GENMOD also provides z tests 
(the normal distribution version of the Wald statistic) for the contribution of 
explanatory variables in the model; these are found in the "Analysis of GEE 
Parameter Estimates" table of Figure 4.2. Results of the z tests are consis­
tent with the score tests, with the exception of minority. 

Given the interaction between minority and split, the effect for minority 
is interpreted via the score test that specifically examines its contribution 
for the fifth cumulative comparison. For each of the other splits, the z tests 
for the minority X split interactions contained in the model suggest that 
there is no difference in the odds for minority versus nonminority children 
for the first cumulative comparison (Y;::: 1), bint.! = .5077, p = .0677, nor for 
the fourth (Y;::: 4), bint.4 = .0282, p = .7884. Substantively, these findings are 
consistent with those of the separate binary models in Table 4.7. There, 
minority had no statistical effect on the individual cumulative logits either 
for the first binary model (p > .05) or for the fourth (p > .05). 

The minority x split interactions inform us as to how much change occurs 
in the effect of minority across the thresholds of the response variable. With 
the assumption of proportional odds relaxed for minority, the results shown 
in the printout tell us how much the log-odds are expected to change for non­
minority children relative to minority children, across the different logistic 
regression splits. For example, after adjusting for the other covariates in the 
model, the odds ratio for a nonminority child relative to a minority child for 
a proficiency score at or beyond category 5 is exp(-.1560) = .855; the odds 
ratio for a minority child relative to a nonminority child for a proficiency 
score at or beyond category 5 is then exp(+.1560) = 1.169. This OR can be 
compared with Table 4.7 for the fifth cumulative logistic regression split 
(where OR = 1.268). Further, this OR is statistically different from 1.0 in the 
PPO model (p = .0445 in "Score Statistics For Type 3 GEE Analysis" table), 
as it is in the fifth cumulative comparison based on the separate binary mod­
els (p < .05 for last split in Table 4.7). 

The GENMOD Procedure 

Class Levels 

split 5 
GENDER 2 
FAMRISK 2 
CENTER 2 
NOREADBO 2 
MINORITY 2 
HALFDAYK 2 

Model Information 

Data Set 
Distribution 
Link Function 
Dependent Variable 
Observations Used 

WORK.PPOM 
Binomial 
Logit 
beyond 
16825 

Class Level Information 

Values 

1 2 3 4 5 
o 1 
0.00 1.00 
0.00 1.00 
0.00 1.00 
0.00 1.00 
0.00 1.00 

CHILDID 3365 0212014C 0294004C 3035008C 3042008C 3042023C 
0044007C 0195025C 0243009C 0621012C 0748011C 
0832023C 3041005C 0028009C 0028014C 0052003C 
0052007C 0195020C 0196007C 0196016C 0196017C 
0196018C 0212002C 0212012C 0216006C 0220005C 
0220020C 0301002C 0301004C 

Ordereg 
Value 

1 

2 

Response Profile 

beyond 

1 
o 

Total 
Frequency 

10045 
6780 

PROC GENMOD is modeling the probability that beyond='l'. 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value 
Deviance 17E3 12003.9325 
Scaled Deviance 17E3 12003.9325 
pearson~Chi-Square 17E3 16074.6352 
Scaled Pearson X2 17E3 16074.6352 
Log Likelihood -6001.9662 

Figure 4.2 Partial Proportional Odds for Minority: GEE Analysis 

Value/DF 
0.7142 
0.7142 
0.9564 
0.9564 
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Figure 4.2 (Continued) 

Analysis Of GEE Parameter Estimates 
Empirical Standard Error Estimates 

Standard 95% Confidence 

Parameter Estimate Error Limits Z Pr > 

Intercept -6.9805 0.5753 -8.1081 -5.8528 -12.13 

GENDER 0 0.5002 0.0663 0.3703 0.6301 7.55 

GENDER 1 0.0000 0.0000 0.0000 0.0000 

FAMRISK 0.00 0.2596 0.0778 0.1071 0.4120 3.34 

FAMRISK 1.00 0.0000 0.0000 0.0000 0.0000 

CENTER 0.00 -0.0759 0.0770 -0.2268 0.0750 -0.99 

CENTER 1.00 0.0000 0.0000 0.0000 0.0000 

NOREADBO 0.00 0.3366 0.0913 0.1575 0.5156 3.68 

NOREADBO 1.00 0.0000 0.0000 0.0000 0.0000 

MINORITY 0.00 -0.1560 0.1240 -0.3989 0.0870 -1.26 

MINORITY 1.00 0.0000 0.0000 0.0000 0.0000 

HALFDAYK 0.00 0.1451 0.0666 0.0145 0.2757 2.18 

HALFDAYK 1.00 0.0000 0.0000 0.0000 0.0000 

WKSESL 0.7450 0.0514 0.6442 0.8457 14.49 

P1AGEENT 0.0588 0.0084 0.0423 0.0753 7.00 

split 1 6.2595 0.1851 5.8968 6.6223 33.82 

split 2 4.4067 0.1204 4.1707 4.6428 36.59 

split 3 3.0966 0.1043 2.8923 3.3010 29.70 

split 4 1.2670 0.0846 1.1012 1. 4328 14.98 

split 5 0.0000 0.0000 0.0000 0.0000 

split*MINORITY 1 0.00 0.5077 0.2779 -0.0370 1. 0523 1.83 

split*MINORITY 1 1.00 0.0000 0.0000 0.0000 0.0000 

split*MINORITY 2 0.00 0.6021 0.1621 0.2843 0.9198 3.71 

split*MINORITY 2 1.00 0.0000 0.0000 0.0000 0.0000 

split*MINORITY 3 0.00 0.5230 0.1334 0.2615 0.7844 3.92 

split*MINORITY 3 1.00 0.0000 0.0000 0.0000 0.0000 

split*MINORITY 4 0.00 0.0282 0.1050 -0.1777 0.2340 0.27 

split*MINORITY 4 1. 00 0.0000 0.0000 0.0000 0.0000 

split*MINORITY 5 0.00 0.0000 0.0000 0.0000 0.0000 

split*MINORITY 5 1.00 0.0000 0.0000 0.0000 0.0000 

Score Statistics For Type 3 GEE Analysis 

Chi-

Source DF Square Pr > ChiSq 

GENDER 1 57.02 <.0001 

FAMRISK 1 11.10 0.0009 

CENTER 1 0.97 0.3243 

NOREADBO 1 13.30 0.0003 

MINORITY 1 4.04 • 0.0445 

HALFDAYK 1 4.75 0.0294 

WKSESL 1 195.03 <.0001 

P1AGEENT 1 49.02 <.0001 

split 4 2447.16 <.0001 

split*MINORITY 4 28.80 <.0001 

Izl 

<.0001 
<.0001 

0.0008 

0.3240 

0.0002 

0.2083 

0.0295 

<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 

0.0677 

0.0002 

<.0001 

0.7884 
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To find the effect of minority for the fourth cumulative logit, (Y;::: 4), 
the interaction terms are added to the main effect. That is, for the odds of 
a nonminority child being at or beyond category 4, exp(-.1560 + .0282) = 
exp(-.1278} = .880; for minority children, this corresponds to exp(+.1278) 
= 1.136. Minority children are 1.136 times as likely to be at or beyond 
category 4, although this effect is not statistically different from 1.0 
(p = .7884). This effect is consistent with the OR for the fourth cumulative 
logit in Table 4.7, which also was not statistically significant (OR = 1.092, 
not significant). For the first logit, (Y ~ 1), the effect for nonminority 
children is exp(-.1560 + .5077) = exp(.35 17) = 1.42; for minority children, 
the effect is exp(-.3517) = .7035. According to the PPO model, this effect 
is not significant (p = .0677), consistent with the result for the effect of 
minority at this first split in Table 4.7 (OR = .796, not significant). Overall, 
minority children are less likely than their nonminority peers to advance 
beyond proficiency levels 2 and 3, but given that they have attained at least 
proficiency level 4, they are more likely than their nonminority peers to 
then achieve mastery in proficiency level 5. 

To examine the effects of the explanatory variables for which the pro­
portional odds assumption was retained, the slope estimates can be inter­
preted directly. For the effect of gender, girls (gender = 0) are exp( +.5002) = 
1.65 times as likely as boys to be at or beyond level 1 , after adjusting for other 
covariates in the model, and this OR remains constant across all underlying 
cumulative logits. Because the events for this explanatory variable with only 
two levels are complementary, we can easily interpret the effect for boys as 
well: boys are exp(-.5002) = .606 times as likely as girls to be at or beyond 
a given proficiency category j, after adjusting for other covariates. For all 
explanatory variables with the exception of minority, the effects are equiva­
lent to those presented for the full CO model in Table 4.5, once the coding of 
IV s is taken into account. For example, in the full CO model the gender slope 
is -.500 with OR = .607. Variable effects in the PPO model for those variables 
for which the proportional odds assumption was retained are of the same 
magnitude and statistical significance as those in the CO model. The direc­
tion has changed because SAS PROC GENMOD provides the estimates for 
the values of the explanatory variable coded as 0 rather than 1. Note that the 
nature of the coding for the categorical IV s does not affect the results for the 
continuous variables in the model between the CO and PPO models. 

To sum,marize the PPO analysis, this approach does resolve some of the 
issues surrounding the full proportional odds model, particularly for the 
minority variable. The GEE estimates correspond quite well with the sepa­
rate effects for minority that were examined across the binary logit models 
in terms of both magnitude and statistical significance. In the study of 
early reading achievement, this result bears further investigation. Creating 
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a variable that categorizes groupings of children based on race/ethnicity for 
inclusion in these models rather than including all "nonwhite" children 
together in a dichotomous arrangement should be further examined, but this 
is not the focus of the current demonstration. The effects for the variables 
that were constrained to follow the proportional odds assumption were 
found to be consistent with the earlier CO analysis. There is currently no 
overall summary measure of goodness of fit for a GEE analysis provided 
through GENMOD (Stokes et al., 2000), but the criteria included in the out­
put under the "Criteria for Assessing Goodness of Fit" heading indicate that 
the deviance (found through a comparison between the fitted model and the 
perfect, or saturated, model) is less than its degrees of freedom (value/dj) < 
1.0), suggestive of adequate model fit (Allison, 1999). Recall that there 
is no reliable test of the model deviance when continuous variables are 
present. However, these statistics can be useful for comparisons of compet­
ing models. Overall, the PPO model seems to be more informative than the 
CO model, particularly with regard to the explanatory variable of minority. 

5. THE CONTINUATION RATIO MODEL 

Overview of the Continuation Ratio Model 

As we saw in Chapter 4, the cumulative odds model uses all the data 
available to assess the effect of independent variables on the log-odds of 
being at or beyond (or the reverse, at or below) a particular category. The 
odds are found by considering the probability of being at or beyond a cat­
egory relative to the probability of being below that category. A restrictive 
assumption made in the CO analysis is that across all cumulative logit com­
parisons, the effect of any independent variable is similar; that is, the odds 
of being in higher categories relative to being in any category below it 
remains constant across the categories. However, these logit comparisons 
for the cumulative odds may not be theoretically appropriate in every 
research situation. If interest lies in determining the effects of independent 
variables on the event of being in a higher stage or category, then a com­
parison group that includes all people who failed to make it to a category 
may not lead us to the best conclusions or understanding of the data in 
terms of differences between people at a low stage versus all higher stages. 
Rather than grouping together all people who failed to make it to a cate­
gory at any point, an alternative ordinal approach involves comparisons 
between respondents in any given category versus all those who achieved a 
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higher category score. This approach forms the class of models known as 
continuation ratio (CR) models. The focus of a CR analysis is to understand 
the factors that distinguish between those persons who have reached a 
particular response level but do not move on from those persons who do 
advance to a higher level. Fox (1997) refers to this process as the analysis 
of a series of "nested dichotomies" (p. 472). 

A continuation ratio is a conditional probability. The discussion to 
follow explains how these continuation ratios can be formed in different 
ways, depending on the researcher's goals. The examples presented are 
based on continuation ratios that take the form OJ = P(response beyond 
cat. jlresponse in at least cat. j), or its complement, 1 - D. = P(response in 

J cat. jlresponse in at least cat. j). 

Armstrong and Sloan (1989), McCullagh and NeIder (1983), Greenland 
(1994), and Agresti (1990, 1996) have discussed the continuation ratio 
model in depth and have highlighted the relationship between the CR 
model and the proportional hazards model proposed by D. R. Cox (1972). 
The proportional hazards model is a familiar one in epidemiological con­
texts and in the survival analysis research literature, but its value can be 
extended to other contexts as well. 

The CR models can be fit using a suitably restructured data set with either 
a logit link function or a complementary log-log (clog-log) link function. The 
restructuring is explained in greater detail later, but essentially, a new data set 
is created from K - 1 smaller data-sets, in which each person has as many data 
lines as his or her outcome score allows. The process is similar to how the 
concatenated data set was created for the partial proportional odds analysis, 
with the very important exception that inclusion in a data set is conditional on 
whether or not mastery was attained at a particular level. The resulting data 
sets then correspond to the specific comparisons contained in Table 4.1 for 
the continuation ratio analyses. Once the data set is concatenated, the out­
come of interest is on whether or not a child advances beyond a particular cat­
egory, given that at least mastery in that category was attained. The data sets 
formed in this fashion are conditionally independent (Armstrong & Sloan, 
1989; Clogg & Shihadeh, 1994; Fox, 1997); thus, the restructured data set 
can be analyzed using statistical methods for binary outcomes. 

The restructuring is necessary in order to derive the desired conditional 
probabilities, or, in the case of the clog-log link, the hazards. In the epi­
demiologicalliterature, the hazard ratio is also known as relative risk; it is 
a ratio of two hazards, where the hazard is an explicit conditional probabil­
ity. The odds ratio, on the other hand, is a ratio of two odds, where the odds 
are a quotient of complementary probabilities, p/(l - p). Of course, the 
probability of interest in a logit model could be a conditional probability, 
which clarifies the usefulness of the logit link for continuation ratio 


