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INTRODUCTION 

The estimation of nonlinear relations between variables is an important concern in 
different areas of the social and behavioral sciences. Several theories do not only 
incorporate linear but also nonlinear relations between variables. The most-often 
investigated nonlinear effects are interaction and quadratic effects.  

An interaction effect implies that a relationship between a predictor and a 
criterion is weakened or strengthened by a second predictor variable (also called 
“moderator variable”; Aiken & West, 1991). In social psychology, for example, an 
interaction effect is hypothesized in an extension of the theory of planned behavior 
(Ajzen, 1991). This theory suggests that a given behavior is dependent on the 
individual’s intention to perform a specific behavior and an individual’s perceived 
ease or difficulty of performing this behavior (perceived behavioral control). In an 
extension of this theory, Elliott, Armitage, and Baughan (2003) could demonstrate 
in a study on compliance with speed-limits that prior behavior of exceeding speed 
limits while driving in built-up areas moderated the relationship between perceived 
behavioral control and subsequent behavior: increasing frequency of prior non-
compliance with speed limits was associated with a decrease in the relationship 
between perceived behavioral control and driver’s subsequent reported non-
compliance with speed limits. 

A quadratic effect implies that predictor variables interact with themselves. In 
health psychology, for example, a quadratic effect is hypothesized in research 
dealing with adolescents’ reputations of peer status and health behaviors. Wang, 
Houshyar, and Prinstein (2006) investigated adolescent boys’ weight-related health 
behaviors and cognitions expecting a curvilinear association between perceived 
body size and reputation-based popularity. The results showed the expected 
inverted U-shaped curve: Lower levels of popularity were associated with self-
reported body shapes at each extreme of the silhouette scale (thin and heavy 
silhouettes), whereas higher levels of popularity were associated with self-reported 
muscular silhouettes. These findings confirm boys’ body ideals toward body 
shapes that are neither thin nor heavy but muscular.  
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Most studies investigate either interaction or quadratic effects. But it is also 
sometimes of interest to combine both types of nonlinear effects in a more complex 
“multiple” nonlinear model. We will cite two examples in order to explain such 
cases in empirical research: 

In educational psychology, for example, theory suggests a negative interaction 
between parent’s education on child’s educational expectations (Ganzach, 1997): 
When the level of education of one parent is high, the educational expectations of 
the child will also be high, even if the level of education of the other parent is quite 
low. However, analyses also revealed two quadratic effects, a positively accelerated 
relationship between mother’s education and child’s educational expectations as 
well as a positively accelerated relationship between father’s education and child’s 
educational expectations. 

In studying the relationship between teachers’ expectations and students’ 
perceived competence in physical education classes, Trouilloud, Sarrazin, Bressoux, 
and Bois (2006) hypothesized a quadratic effect, that is a negatively accelerated 
relationship between teachers’ early expectations and students’ later perceived 
competence. However, analyses also revealed an interaction effect: Teachers’ early 
expectations had a stronger effect on students’ later perceived competence when 
the classroom motivational climate was low in autonomy support. 

In this chapter, we will investigate methods for the simultaneous analysis of 
multiple nonlinear relations, i.e., latent interaction and latent quadratic effects. We 
begin by briefly explaining nonlinear regression using observed (manifest) 
variables and some problems of introducing nonlinear terms in the regressions 
equation. We then move to nonlinear structural equation modeling and present four 
alternative methods that attempt to estimate the nonlinear effects. Finally, the 
performance of theses methods is compared by analyzing artificial data sets of a 
Monte Carlo study.  

NONLINEAR REGRESSION WITH MANIFEST VARIABLES 

In a multiple regression analysis, the variables are usually assumed to be linearly 
related, that is, the criterion variable Y is a linear function of two predictor 
variables, e.g., X and Z. However, as has been shown in the empirical examples 
cited above, it may be theoretically plausible that – in addition to the linear effects 
of X and Z on Y – there are also nonlinear effects if the relation between X and Y is 
moderated by Z or by the predictor variable X itself.  

In order to analyze the nonlinear effects together with the linear effects in the 
regression equation, new terms must be created by forming products of the 
predictor variables. For the analysis of an interaction effect, the product of X and Z, 
the interaction term XZ, is formed, which is then included in the regression 
equation as a third variable. For the analysis of quadratic effects, the products of X 
with itself and of Z with itself, the quadratic terms X2 and Z2, are formed which are 
then entered as a fourth and a fifth variable into the equation. As it is often 
meaningful that researchers should investigate interaction and quadratic effects 
simultaneously, nonlinear regression models can contain several nonlinear terms, 
e.g., one or more interaction terms and one or more quadratic terms, depending on 
the number of independent or predictor variables in the equation. In the case of two 
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predictors (see Equation 1), a model with multiple nonlinear effects includes a 
criterion variable Y, two predictor variables X and Z, an interaction term XZ, two 
quadratic terms X2 and Z2, and a disturbance term   

 
2 2

0 1 2 3 4 5Y X Z XZ X Z          

 

(1) 
 

In Equation (1), 0 is the intercept,  and  are the linear effects, 3 is the 
interaction effect, and 4 and 5 are the quadratic effects.  

Generally, hypotheses regarding interaction and quadratic effects between 
continuous variables have been analyzed by means of nonlinear multiple regression 
analysis, although it is well-known that nonlinear regression is plagued by several 
methodological problems (e.g., Aiken & West, 1991; Cohen, Cohen, West, & Aiken, 
2006; Dimitruk, Schermelleh-Engel, Kelava, & Moosbrugger, 2007; Moosbrugger, 
Schermelleh-Engel, & Klein, 1997).  

METHODOLOGICAL PROBLEMS OF NONLINEAR REGRESSION 

There are two main methodological problems associated with nonlinear regression 
models, namely measurement error and multicollinearity. 

Measurement Error 

Multiple regression models implicitly assume that all observed variables are 
measured without error, although in most cases observed variable have a 
considerable amount of measurement error and are therefore not perfectly reliable. 
The consequence of this lack of reliability is that the true effects (parameter values) 
may be underestimated. Ignoring measurement error can therefore lead to biased 
estimates of the effects, a problem that will even be aggravated when nonlinear 
terms are included in the multiple regression equation. The reliability of a 
nonlinear term (interaction term, quadratic term) is affected by measurement error 
to an even greater extent than the reliability of a linear term. The estimated 
regression weight associated with this term greatly underestimates the population 
coefficient.  

The reliability of the interaction term is usually lower than the reliabilities of 
the predictor variables used to form the interaction term. However, the reliability of 
the interaction term does not only depend on the reliability of the predictor 
variables, but also on the correlation between the predictors (“multicollinearity”). 
In case of two predictor variables X and Z, the reliability of the interaction term is 
as follows (cf. Busemeyer & Jones, 1983; Dimitruk et al., 2007):  
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The consequences of Equation (2) are shown in Figure 1: When X and Z are 
uncorrelated (Corr(X, Z) = 0), the reliability of the interaction term is just the 
product of the reliabilities of the two predictors. If, for example, X and Z have 
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reliabilities of Rel(X) = Rel(Z) = .60, then Rel(XZ) = .36. Even with rather reliable 
measures (e.g. Rel(X) = Rel(Z) = .80), the reliability of the interaction term is only 
.64. With increasing correlation, the reliability of XZ also increases. For less 
reliable predictor variables (Rel = .60), the reliability of XZ increases to .40 for 
Corr(X,Z) = .25 and to .49 for Corr(X,Z) = .50. For reliable predictor variables 
(Rel = .80), the reliability of XZ increases to .66 for Corr(X,Z) = .25 and to .71 for 
Corr(X,Z) = .50. It is obvious that increasing multicollinearity enhances the 
reliability of the interaction term, but the interaction term cannot reach the 
reliability of the predictor variables even with higher correlated predictor variables. 
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Figure 1. Relation between the correlation of the predictors, Corr(X,Z), and the reliability of 
the interaction term, Rel(XZ), for Rel(X) = Rel(Z) = .60, .80, and Corr(X,Z) = .00, .25, .50. 

In contrast to the reliability of the interaction term XZ, the reliability of the 
quadratic term X2 (or Z2, respectively) is calculated differently (see Equation 3). 
Although it seems reasonable to assume that the reliability of the quadratic term is 
formed analogously to the reliability of the interaction term, this is not correct 
(Dimitruk et al., 2007). This is quite obvious when Z in Equation (2) is substituted 
by X. Including the correlation of X with itself would be incorrect due to the fact 
that not only the true scores but also the error scores are perfectly correlated. As 
the reliability is defined as the ratio of the true score variance to the total variance, 
only the correlation of the true scores should be included in the numerator of the 
equation. Therefore the reliability of the quadratic term X2 is just the squared 
reliability of the variable X (see Equation 3). 

 
2 2( ) [ ( )]Rel X Rel X  

 

(3) 
 

Thus, as is shown in Figure 2, the reliability of the quadratic term X2, the square 
of Rel(X), is usually smaller than the reliability of the predictor variable X. Both 
variables X and X2 will only reach a reliability of 1.0 when X is measured without error.  
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Figure 2. Relation between the reliability of the predictor variable X and the reliability of its 
quadratic term X2. 

Therefore it is recommended that nonlinear multiple regression analysis is only 
appropriate for manifest variables with very high reliabilities. In all other cases, 
nonlinear structural equation analysis (see below), which accounts for measurement 
error, should be used. 

MULTICOLLINEARITY 

The second problem that has gained attention in the literature of the past years is 
the relationship between interaction and quadratic terms when multicollinearity 
between the predictor variables is present (e.g., Busemeyer & Jones, 1983; 
Ganzach, 1997; Kelava, Moosbrugger, Dimitruk, & Schermelleh-Engel, 2008; 
Lubinski & Humphreys, 1990; MacCallum & Marr, 1995). When predictor 
variables are uncorrelated, the value of a regression weight remains unchanged 
regardless of all other predictor variables included in the regression equation. But 
when predictor variables are correlated, however, the value of a regression weight 
depends on which other variables are included in the model. Thus, when predictors 
are correlated, a regression coefficient does not simply reflect an inherent effect of 
the predictor variable on the criterion variable but rather a partial effect. On these 
grounds, estimated regression coefficients may vary widely from one data set to 
another (cf. Dimitruk et al., 2007).  

When predictor variables are highly correlated, it is often difficult to distinguish 
between variance explained by X and variance explained by Z due to a high amount 
of shared variance. This problem is even aggravated when nonlinear terms are 
added in the regression equation because the nonlinear terms XZ, X2, and Z2 are 
then also correlated. While multicollinearity of predictors enhances the reliability 
of an interaction term (see above), it also causes severe estimation and interpretation 
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problems because of the high correlations between all variables in the nonlinear 
regression model.  

There are two sources of multicollinearity between predictor variables and their 
nonlinear terms (cf. Aiken & West, 1991; Marquardt, 1980): The first is 
nonessential multicollinearity that exists only due to scaling and that disappears 
when the predictors are centered before forming the product terms. The second 
source is essential multicollinearity, correlations that exist because of nonnormality 
or any nonsymmetry in the distribution of the predictor variables. Essential 
multicollinearity cannot be eliminated. 

An example for nonessential multicollinearity can be seen in the correlation 
matrix in Table 1. In this matrix, the correlation between X and Z is .50. As a 
consequence, very high correlations exist between the predictor variables and their 
nonlinear terms with coefficients up to 1.0 between X and X2 as well as Z and Z2. In 
addition to this, the correlations between the nonlinear terms are also high, but only 
part of these correlations is due to nonessential multicollinearity.  

Table 1. Nonessential multicollinearity in a correlation matrix of uncentered raw score 
variables X, Z (Corr(X,Z) = .50), and their nonlinear terms XZ, X2, and Z2. 

 X Z XZ X2 Z2 
X 1.00     
Z .50 1.00    
XZ .87 .87 1.00   
X2 1.00 .50 .87 1.00  
Z2 .50 1.00 .87 .50 1.00 

 
Centering the predictor variables X and Z by subtracting the mean from each 

predictor variable eliminates nonessential multicollinearity between the predictor 
variables and their nonlinear terms. Using the centered variables Xc and Zc, the new 
interaction term XcZc and quadratic terms Xc

2 and Zc
2 are formed. In contrast to the 

correlations based on raw scores (cp. Table 1), the correlations between the 
centered variables Xc and Zc and their nonlinear terms XcZc, Xc

2, and Zc
2 drop to 

zero (Table 2).  
By centering the predictor variables, nonessential multicollinearity between the 

nonlinear terms could also be removed. The correlations between the interaction 
term XcZc and the quadratic terms Xc

2 and Zc
2 are smaller than the correlations 

based on raw scores, but they are still high. As is shown in Table 2, the correlations 
between the interaction term and the quadratic terms drop from .86 to .63, while 
the correlation between both quadratic terms is now .25 compared to the coefficient 
of .50 in Table 1. 
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Table 2. Remaining multicollinearity in a correlation matrix of centered variables Xc, Zc and 
nonlinear terms XcZc, Xc

2, and Zc
2. 

 Xc Zc XcZc Xc
2 Zc

2 
Xc 1.00     
Zc .50 1.00    
XcZc .00 .00 1.00   
Xc

2 .00 .00 .63 1.00  
Zc

2 .00 .00 .63 .25 1.00 
 
With increasing correlation of the predictor variables the multicollinearity 

problem is exacerbated, insofar as the interaction term and the quadratic terms 
would share more and more variance. As a consequence it would be increasingly 
difficult to detect these effects separately (MacCallum & Mar, 1995; Ganzach, 
1997). Another consequence of shared variance is that detected nonlinear effects 
might be an artifact if the analyzed model had been misspecified. For example, if 
the true model is a quadratic model and the analyzed model is an interaction model, 
this could result in a significant but spurious interaction effect (Klein, Schermelleh-
Engel, Moosbrugger, & Kelava, 2009).  

The problem of multicollinearity is not only present in nonlinear regression but 
also in nonlinear structural equation modeling. Multicollinearity leads in general to 
parameter estimates with higher standard errors, so that the power of detecting true 
effects is lowered. In order to eliminate nonessential multicollinearity it is 
recommended to always center the (manifest or latent) predictor variables. 

NONLINEAR STRUCTURAL EQUATION MODELING 

Over the last few years, nonlinear structural equation modeling (SEM) has received 
much attention and has become increasingly popular in the context of applied 
behavioral and social science research (for an overview, see Schumacker & 
Marcoulides, 1998). Nonlinear SEM provides many advantages compared to 
analyses based on manifest variables. It is, however, more complicated to conduct 
and is hindered by methodological problems that are different from those in 
multiple regression analysis (Dimitruk et al., 2007).  

Several estimation methods have been developed during the last years. All 
methods aim at providing unbiased and efficient parameter estimates for the 
nonlinear effects. A nonlinear SEM with three nonlinear terms, one interaction 
term and two quadratic terms, is depicted in Figure 3. 

In the following, we will use the LISREL notation (cf. Jöreskog & Yang, 
1996). The nonlinear structural equation model (see Figure 3) includes two latent 
exogenous variables 1 and 2, a latent interaction term 12, two latent quadratic 
terms 1

2 and 2
2, a latent endogenous variable  and a disturbance term . Linear 

parameters are denoted by 11, 12, and - using Klein and Moosbrugger’s (2000) 
notation - 12 is the interaction effect of 12, and 11 and 22 are the quadratic 
effects of 1

2 and 2
2, respectively. The structural equation of the nonlinear model 
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with an intercept term  is given in Equation (4). Each exogenous variable is 
measured by three observed indicators (X1, X2, X3, and X4, X5, X6, respectively, see 
Equation 5), and the endogenous variable  is measured by three observed 
indicators (Y1, Y2, Y3, see Equation 6). The measurement model of 1 and 2 
includes the factor loadings 21, 31, and 42, 52 (X1 and X4 are the scaling 
variables with factor loadings 11 = 1 and 42 = 1) and the error variables 1,..., 6. 

The measurement model of  includes the factor loadings 21
y , 31

y  (Y1 is the 

scaling variable with factor loading 11
y  = 1) and the error variables 1, 2, and 3.  

 

 

Figure 3. Nonlinear structural equation model with one latent criterion , two latent 
predictors 1 and 2,a latent interaction term 12, and two latent quadratic terms 1

2 and 
2

2 measured by nine indicator variables (X1,…,X6; Y1,…,Y3). 

In addition to the parameters that are estimated by all approaches for the 
analysis nonlinear SEM, several parameters resulting from the nonlinearity of the 
model have to be estimated that differ between the approaches.  

While approaches especially developed for the analysis of nonlinear SEM only 
need the specification of the nonlinear terms 12, 1

2, and 2
2, and the estimation 

of the nonlinear effects 12, 11, and 22, product indicator approaches in the 
LISREL tradition have to additionally form interaction and quadratic terms from 
the manifest linear variables as indicators of the latent nonlinear terms, to specify 
the latent mean structure, and they need to estimate factor loadings and error 
variances of the nonlinear measurement model.  
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Structural 
equation: 

2 2
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(6) 
 

METHODOLOGICAL PROBLEMS OF NONLINEAR SEM 

Nonnormality 

The most severe problem of nonlinear SEM is the multivariate nonnormality of the 
nonlinear terms (cf. Dimitruk et al., 2007; Klein & Moosbrugger, 2000; 
Moosbrugger et al., 1997). Even if all indicators of the latent predictor variables 1 
and 2 (and the latent predictors themselves) are normally distributed, the 
distributions of the latent nonlinear terms 12, 1

2, and 2
2 are not normal1. 

Furthermore, the latent criterion variable  will also be nonnormally distributed. 
The degree of nonnormality of the distribution of  depends on the nonnormality 
of 12, 1

2 and 2
2 as well as on the size of the nonlinear effects 12, 11, and 22.  

For the analysis of nonlinear SEM, this fact has two possible consequences: 
First, adequate estimation methods should take the multivariate nonnormality 
explicitly into account (e.g., the heteroscedasticity utilizing approaches LMS and 
QML - see below). Second, if an estimation method is used under the assumption 
of normally distributed indicator variables that does not take the nonnormality into 
account, the robustness against violation of this assumption for the analysis of 
nonlinear models should be investigated thoroughly. For inferential statistics, the 
possible bias of the estimated standard errors can become critical in the method’s 
performance. Simulation studies (see below) can decide whether this lowers the 
method’s efficiency, which might become very low when sample size decreases.  
 

Multicollinearity 

While the reliability problem is solved by employing SEM, the multicollinearity 
problem remains and may even be exacerbated when using latent variable 
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approaches (cf. Dimitruk et al. 2007; Kelava et al., 2008). In nonlinear SEM the 
correlation between latent predictor variables is generally higher than the 
correlation between manifest indicator variables due to attenuation by unreliability 
of the indicators. Thus, the multicollinearity increases. If, for example, the 
correlation between two manifest variables, each measured with a reliability of .90, 
is .50, the latent correlation is .56. But if the reliability of the indicator variables is 
as low as .63 and the manifest correlation is still .50, the latent correlation is .80.  

A further exacerbation of the multicollinearity problem apparently occurs when 
all three nonlinear terms are included in the equation due to shared variance among 
them. With a correlation as high as .80 between the latent predictor variables, the 
correlations between the latent interaction term 12 and the quadratic terms 1

2 and 
2

2 will be .88 (see Table 3).  

Table 3. Correlation matrix of centered latent variables 1 and 2 and their nonlinear terms 
12, 1

2, and 2
2

, when the correlation of the manifest predictor variables is .50 (e.g., 
Rel(X1) = Rel(X4) = .63). 

 1 2 12 1
2 2

2 
1 1.00     
2 .80 1.00    
12 .00 .00 1.00   
1

2 .00 .00 .88 1.00  

2
2 .00 .00 .88 .64 1.00 

 
All methods for the analysis of nonlinear SEM have to deal with the problem of 
multicollinearity. Consequences of multicollinearity may include estimation 
problems, biased estimates and standard errors that are not correctly estimated 
(cp. Kelava et al., 2008). 

METHODS FOR THE ANALYSIS OF LATENT MULTIPLE NONLINEAR EFFECTS 

In the last two decades there has been a huge amount of publications dealing with 
different estimation approaches for the analysis of interaction effects in structural 
equation models (for an overview see Marsh, Wen, & Hau, 2004; Moosbrugger et 
al., 1997; Schumacker & Marcoulides, 1998). In contrast to this kind of research, 
there are only few studies that investigate latent quadratic effects using nonlinear SEM 
(e.g., Klein & Muthén, 2007; Marsh, Wen, & Hau, 2006), and only few that investigate 
latent interaction and latent quadratic effects simultaneously in a nonlinear SEM 
(e.g., Dimitruk et al., 2007; Kelava et al, 2008; Ping, 1998; Wall & Amemiya, 2000).  

In order to avoid misspecification, Ganzach (1997) has demanded that all 
nonlinear regression terms should be analyzed simultaneously, a demand that is 
also valid for nonlinear SEM (cf. Klein et al., 2009). Using simulation studies 
Ganzach (1997) demonstrated that it is often very useful to include quadratic terms 
in regression models when interactions are estimated, because without quadratic 
terms a nonsignificant effect may be observed in the presence of a true interaction 
effect or an estimated interaction effect may be found to have a positive sign 
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although the true effect has a negative sign. When quadratic effects are being 
analyzed, it is also important to include the interaction effect in the nonlinear 
model because quadratic effects may either turn out to be nonsignificant in the 
presence of true quadratic effects or they may show a positive accelerated relation 
while a true negative accelerated relation exists (see also Kelava et al., 2008). 

There are four approaches that we will consider for the analysis of multiple 
latent nonlinear effects: Latent Moderated Structural Equations (LMS; Klein & 
Moosbrugger, 2000), Quasi-Maximum Likelihood (QML; Klein & Muthén, 2007), 
the constrained approach (Jöreskog & Yang, 1996) extended by quadratic terms 
(Kelava et al., 2008), and the unconstrained approach (Marsh, Wen, & Hau, 2004) 
extended to multiple nonlinear terms. First, we will introduce these four approaches. 
Second, we will conduct simulation studies to investigate the performance of 
theses approaches for the simultaneous analysis of three latent nonlinear effects, 
i.e., an interaction effect and two quadratic effects.  

Latent Moderated Structural Equations  

Klein and Moosbrugger (2000) developed the Latent Moderated Structural 
Equations (LMS) method for the estimation of multiple latent interaction and 
quadratic effects that takes the nonnormality caused by the latent nonlinear terms 
explicitly into account. In LMS, no manifest nonlinear indicators are needed for the 
estimation of the nonlinear effects. Instead, since the latent criterion variable is 
nonnormally distributed when nonlinear effects are in the data, the distribution of 
the latent criterion is utilized to estimate the nonlinear effects. As the latent predictor 
and the latent moderator variable (the second predictor variable) are assumed to be 
bivariate normally distributed, it follows that for each value of the moderator 
variable the conditional distribution of the predictor variable and the conditional 
distribution of the latent criterion variable is normal. Therefore the nonnormal 
density function of the joint indicator vector (X, Y) is approximated by a finite 
mixture distribution of multivariate normally distributed components. In order to 
estimate the model parameters, model implied mean vectors and covariance 
matrices of the mixture components are utilized.  

LMS only assumes that the latent predictor variables 1 and 2 and all error 
variables (1 - 6, 1 - 3, 1) are normally distributed. The ML estimates are 
computed with the Expectation-Maximization (EM) algorithm (Dempster, Laird, & 
Rubin, 1977).  

As simulation studies have shown, LMS provides efficient parameter estimators 
and unbiased standard errors (Klein, 2000; Klein & Moosbrugger, 2000; Schermelleh-
Engel, Klein, & Moosbrugger, 1998).  

The LMS method has been adopted in the Mplus 5.0 program (Muthén & 
Muthén, 1998-2007). The syntax of the input file is quite easy to set up as only the 
equations for the measurement models (Equations 5 and 6) and the structural 
model (Equation 4) are needed and additionally, the nonlinear terms have to be 
specified (see Appendix A1). In Mplus, latent nonlinear terms are demanded by 
using the XWITH command (Equation 7); the latent variables 1 and 2 are 
denoted by f1 and f2: 
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f1f2 | f1 XWITH f2; 
f1f1 | f1 XWITH f1; 
f2f2 | f2 XWITH f2; 

(7) 

Quasi-Maximum Likelihood  

Klein and Muthén (2007) developed the Quasi-Maximum Likelihood (QML) 
method, a less demanding approach for the estimation of multiple interaction and 
quadratic effects. Just like LMS, QML takes the nonnormality caused by the latent 
nonlinear terms explicitly into account. Again, no manifest nonlinear indicators are 
needed. By applying the quasi-likelihood principle, the nonnormal density function 
of the joint indicator vector (X, Y) is approximated by a product of a normally 
distributed and a conditionally normal density function. In contrast to LMS, QML 
only assumes that the conditional distribution of the latent criterion variable given 
the X-variables can be approximated by normal distributions.  

As QML is only an approximate ML estimator, a somewhat lower efficiency of 
the estimator should be expected; nevertheless, this approach should be more 
robust against the violation of distributional assumptions. Simulation studies have 
shown that QML provides parameter estimators that are almost as efficient as the 
LMS estimators when predictor variables are normally distributed (Dimitruk et al., 
2007; Klein & Muthén, 2007). If the distributional assumptions are violated, QML 
provided a more efficient estimation of the interaction parameter 12 than LMS 
does in simulation studies suggesting that QML is more robust against the violation 
of the distributional assumption (Klein & Muthén, 2007).  

QML is currently not implemented in a commercial statistics software, but it is 
a stand-alone program. The syntax of the QML program (see Appendix A2) is matrix-
based. One needs to specify all parameter matrices including factor loadings, linear 
effects, covariances of the latent predictor variables, and covariances of the error terms.  

In addition to these matrices, a parameter matrix  for the nonlinear effects is 
needed (Klein, 2007; Klein & Moosbrugger, 2000). The matrix  is assumed to be 
an upper triangular matrix; the quadratic effects are listed on the diagonal, the 
interaction effects in the upper triangular, and zeros in the lower triangular. For the 
investigation of a nonlinear SEM with one interaction effect and two quadratic 
effects,  has to be specified as follows:  

 

11 12

220

  
    

 

 

(8) 
 

Extended Constrained Approach  

The constrained approach (Jöreskog & Yang, 1996) and the unconstrained 
approach (Marsh et al., 2004) of the LISREL program were developed in the 
tradition of Kenny and Judd (1984). Just as in nonlinear regression, both 
approaches require that latent nonlinear terms are formed and that a measurement 
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model for the latent nonlinear terms 12, 1
2 and 2

2 is specified. Using the 
maximum likelihood method for parameter estimation it is assumed that all latent 
variables including the nonlinear terms are normally distributed2.  

Kenny and Judd (1984) were the first to describe how a latent nonlinear model 
with an interaction or a quadratic effect can be analyzed. Their approach involves 
the formation of products of the indicators of linear predictors which serve as 
indicators of the latent interaction or quadratic terms.  

Kenny and Judd (1984) suggested using all possible manifest product variables 
as indicators of the latent interaction term 12. Using the constrained approach for 
the example depicted in Figure 3 this would require the forming of 9 product 
indicators for the latent interaction term, X1X4, X1X5, X1X6, X2X4, X2X5, X2X6, X3X4, 
X3X5, and X3X6.  

If X2 is an indicator of 1 and X5 an indicator of 2 (with X2 = 211 + 2 and 
X5 = 522 + 5), then the indicator X2X5 of the interaction term 12 would be 
specified as follows: 

2 5 21 1 2 52 2 5

21 52 1 2 21 1 5 52 2 2 2 5

83 1 2 8

(λ ξ +δ )(λ ξ +δ )

λ λ ξ ξ +(λ ξ δ +λ ξ δ +δ δ )

λ ξ ξ +δ

X X 





 (9) 

As the parameters in this measurement equation cannot be estimated directly, 
several constraints are needed. The variance decomposition of the interaction 
indicator X2X5 required for model specification is given by 

2
2 5 83 1 2 8( ) λ (ξ ξ )+ (δ )Var X X Var Var  (10) 

and includes the following constraints: 
2 2 2
83 21 52

2
1 2 1 2 1 2

2 2
8 21 1 5 52 2 2 2 5

λ = λ λ

(ξ ξ ) = (ξ ) (ξ )+ (ξ ,ξ )

(δ ) λ (ξ ) (δ )+λ (ξ ) (δ )+ (δ ) (δ )

Var Var Var Cov

Var Var Var Var Var Var Var

 

 

(11) 
 

As a measurement model for all latent nonlinear terms that includes all possible 
manifest products would require many measurement equations (e.g., nine equations 
when two linear latent predictors are each measured by three indicators) with 
overlapping information, Marsh et al. (2004) suggested to use the matched-pair 
strategy: All indicators of the linear terms 1 and 2 should be used in the formation 
of the indicators of each latent nonlinear term, but each of the multiple indicators 
should be used only once for each nonlinear term. For our example depicted in 
Figure 3 this means that only three indicators for each nonlinear factor are needed: 
X1X4, X2X5, X3X6 for the latent interaction term 12, X1

2, X2
2, X3

2 for the latent 
quadratic term 1

2, and X4
2, X5

2, X6
2 for the latent quadratic term 2

2.  
A further revision of the constrained approach was done by Algina and 

Moulder (2001). Their revision implied that the indicators of the linear terms have 
to be centered, a proposition that had also been suggested by Jaccard and Wan 
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(1995). The measurement model for the predictor variables of the nonlinear model 
is therefore as follows: 
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Under the supposition that 1, 2,  and all error terms  and  are multivariate 

normal, uncorrelated and have zero means (except that 1 and 2 are allowed to be 
correlated), Jöreskog and Yang (1996) proposed a model with a latent mean 
structure.  

Using the constrained approach extended for multiple nonlinear terms (Kelava 
et al., 2008) the mean vector and covariance matrix of 1, 2, 12, 1

2, and 2
2 are, 

respectively:  
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21 22
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   
       
         
   
      

          

κ  (13) 

 
Furthermore, even if 1 and 2 are centered so as to have zero means, 

3 = E(12) = Cov(1,2) = 21 will typically not be zero. Extending Jöreskog and 
Yang’s (1996) latent interaction model to a model with quadratic terms (Kelava et 
al., 2008), 4 = E(1

2) = Var(1) = 11 and 5 = E(2
2) = Var(2) = 22 will also not 

be zero. Hence, a mean structure is always necessary and should always be 
specified (cf. Marsh et al., 2004).  
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In contrast to QML, the nonlinear effects of the extended constrained approach 
are included in the parameter matrix of the linear effects so that 12 = 13, 11 = 14, 
and 22 = 15 in LISREL notation.  

The syntax of the extended constrained approach (Kelava et al., 2008) using the 
LISREL program is quite complicated (see Appendix A3), extremely error-prone 
and therefore limited to few indicator variables. Nevertheless, simulation studies 
examining the performance of this approach have shown that parameter estimates 
of a model with only one nonlinear latent interaction effect are unbiased (cf. 
Kelava et al., 2008; Moulder & Algina, 2002; Schermelleh-Engel et al., 1998; 
Yang-Jonsson, 1998). However, simulation studies have also shown that using the 
maximum likelihood estimation method of the LISREL program with nonnormal 
product terms may lead to serious underestimation of standard errors and biased 2 
values even for models that include only one latent interaction term (Marsh et al., 
2004; Jöreskog & Yang, 1996; Kelava et al., 2008; Schermelleh-Engel et al., 
1998). 

Extended Unconstrained Approach  

Marsh et al. (2004) revised the constrained approach in that they did not impose 
any complicated nonlinear constraints to define relations between product indicators 
and the latent nonlinear terms and denoted this new approach as “unconstrained 
approach”.  

In the unconstrained approach extended to quadratic nonlinear terms (Kelava et 
al., 2008) factor loadings as well as error variances and covariances (see Appendix 
A4) are estimated directly without using any constraints. Additionally, parameters 
based on assumptions of normality are also not constrained, so that this approach 
does not need any constraints on the latent variances, too. The covariances between 
the linear and nonlinear latent variables may be freely estimated if it is assumed 
that the variables are nonnormally distributed. The only constraints used in this 
approach are the constraints on the latent means (Equation 15).  
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κ  (15) 

 
An advantage of the extended unconstrained approach for applied researchers 

clearly is that the syntax is much easier to set up than for the extended constrained 
approach as no complicated, nonlinear constraints are required. 

Simulation studies of latent interaction models showed that the unconstrained 
approach is comparable to the constrained approach in terms of unbiasedness of 
parameter estimates, but the parameter estimates may be biased for nonnormal 
data. Both approaches performed less well than QML with regard to standard error 
estimates and power (Klein & Muthén, 2007; Marsh et al., 2004). However, even 
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when normality assumptions were met but sample size was small the parameter 
estimates of the unconstrained approach were more biased and standard errors were 
larger compared to the constrained approach and to QML.  

MONTE CARLO STUDY 

In nonlinear structural equation modeling, the analysis of latent quadratic effects is 
as important than the analysis of latent interaction effects (cf. Klein et al., 2009). 
However, while the latter has received considerable attention in the methodological 
literature, relatively few simulation studies have been conducted that compare the 
performance of different methods for the analysis of latent quadratic effects and 
almost none for the analysis of multiple nonlinear effects in a polynomial structural 
equation model.  

In two simulation studies, we therefore investigated the performance of LMS, 
QML, the extended constrained approach and the extended unconstrained approach 
for the analysis of two nonlinear models that only differ in the size of the 
multicollinearity: the latent covariance was varied across the two levels 
Cov(2,1) = .00 and Cov(2,1) = .50. In the model with correlated predictor 
variables the latent nonlinear terms are of course also correlated as outlined above 
(Cov(21,1

2) = Cov(21,2
2) = .63, Cov(1

2,2
2) = .25). All other parameters were 

held constant in both models.  
 
The following parameter values were selected for the population model:  

 = –.20 for uncorrelated latent predictors ( = –.30 for correlated latent 
predictors), 11 = 12 = .316, 12 = .20, 11 = 22 = .10, 11 = 22 = 1.00. According 
to Figure 3, the predictor variables 1, 2, and the criterion variable 1 were each 
measured by three indicator variables with a reliability of .80. The given selection 
of nonlinear effects results in a model in which 4% (5%) of the variance of 1 is 
explained by the interaction effect and 2% by each quadratic effect, while the 
linear effects each explain 10% of the variance of 1. Hence, the study tested the 
performance of the four approaches with reasonably large nonlinear effects 
compared to those found in empirical studies. The data for the latent predictor 
variables were generated according to the normal distribution. Sample size was 
N = 400 with 500 data sets in each simulation study. We restrict the report of the 
simulation results to the three structural parameters of interest, 12, 11, and 22, 
and the parameters of the latent variances 11, 22 and the latent covariance 21.  
Data were generated using the PRELIS 2.7 program (Jöreskog & Sörbom, 1999). 
Analyses with the extended constrained approach and the extended unconstrained 
approach were conducted using LISREL 8.72 (Jöreskog & Sörbom, 1996). For the 
LMS analyses (Klein & Moosbrugger, 2000) Mplus 5.0 (Muthén & Muthén, 1998-
2007) was used, for the QML (Klein & Muthén, 2007) analyses QuasiML 3.10 
(Klein, 2007).  

Monte Carlo Statistics 

In the two simulation studies, the means (M) of all 500 parameter estimates and 
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their standard deviations (SD) as well as the means of the 500 estimated standard 
errors (SE) for each parameter were calculated. In addition to this, we also 
calculated the bias (underestimation or overestimation) of each parameter estimate 
and the bias of the estimated standard error. Furthermore, we examined the power 
of the approaches to detect the true effects. 

The means of all parameter estimates (M) over all 500 data sets are estimates of 
the population values that we had defined before. The standard deviation of each 
parameter estimate is then an estimate for the true standard error (SD) of an 
approach’s parameter estimator. The mean of the 500 estimated standard errors 
(SE) for each parameter was also calculated and compared to the estimated true 
SD. If the means of the SEs of an approach are generally smaller than the true 
standard errors (SD), the approach shows a progressive behavior so that effects are 
more often significant than they actually are in the population (increased Type I 
error rate). 

The bias of a parameter estimator was calculated as follows: 
 

π̂ - π
ˆ(π)

π
Bias   (16) 

where ̂  denotes the parameter estimate, ̂  the mean of the 500 parameter 
estimates, and  the population parameter value. 

The bias for each estimated standard error was calculated as follows:  
 

-
( )

SE SD
Bias SE

SD
  (17) 

 

where SE  denotes the mean of the 500 estimated standard errors, and SD is the 
estimated true standard error of an approach’s estimator calculated over 500 
parameter estimates. 

Power was examined based on the ratio of the parameter estimate to its standard 
error and the number of t-values were counted that exceeded the critical value of 
1.96. As this measure may not be trustworthy when standard errors are 
underestimated by a method, we therefore calculated the corrected power by 
dividing the parameter estimates by their true standard error SD (“true power”).  

Results of the Simulation Studies 

Study 1 
The results of the first simulation study (see Table 4) with the condition of 
uncorrelated predictor variables (21 = 0.00) show that all four methods perform 
about equally well with regard to the estimated means (M) of the nonlinear effects 
12, 12, and 22, their true standard errors (SD), the mean of the estimated 
standard errors (SE), and the true power to detect the nonlinear effects. The bias of 
the parameter estimates is smaller than 2% for all approaches and the bias of the 
standard errors is about the same for all approaches with the smallest bias for the 
extended unconstrained approach. The power to detect the interaction effect is high 
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for all approaches (> 90%), while the power of the quadratic effects is somewhat 
lower (69% - 82%), especially the power of LMS and QML to detect 22. In case 
that the latent linear predictors are uncorrelated the approaches perform equally 
well in detecting nonlinear effects. 

Table 4. Performance of LMS, QML, the constrained and the unconstrained approach for 
estimating the nonlinear effects 12, 11, 22 when predictors are uncorrelated (21 = 0.00). 

21 = 0.00 

Parameter True 
Value 

M Bias SD SE SE-Bias True 
Power 

LMS  

12 0.20 0.199 -0.50% 0.052 0.050 -4.00% 96.60% 

11 0.10 0.102 1.96% 0.036 0.036 0.00% 82.00% 

22 0.10 0.100 0.00% 0.039 0.036 -8.33% 69.20% 

         

QML  

12 0.20 0.198 -1.01% 0.053 0.051 -3.92% 93.60% 

11 0.10 0.102 1.96% 0.037 0.036 -2.78% 78.60% 

22 0.10 0.100 0.00% 0.039 0.036 -8.33% 68.80% 

         

Extended Constrained Approach 

12 0.20 0.198 -1.00% 0.051 0.048 -5.88% 97.80% 

11 0.10 0.099 -1.00% 0.036 0.034 -5.56% 78.60% 

22 0.10 0.099 -1.00% 0.037 0.034 -8.11% 76.00% 

                

Extended Unconstrained Approach  

12 0.20 0.201 0.50% 0.053 0.052 -1.87% 97.00% 

11 0.10 0.101 1.00% 0.037 0.036 -2.70% 78.40% 

22 0.10 0.101 1.00% 0.039 0.037 -5.13% 74.60% 

 
We were also interested in investigating whether the covariances between the 

latent predictors would be estimated correctly. For no correlation between the latent 
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linear predictors (no multicollinearity) large differences between the approaches 
are detected (see Table 5).  

While LMS and QML perform very well and estimate the latent variances and 
the latent covariance with a high precision, both LISREL approaches produce 
standard errors (SE) that underestimate the true standard errors SD (see column SE-
Bias). The estimated standard errors (SE) underestimate the SD by about 30 % 
(extended unconstrained approach) or even by more then 60% (extended 
constrained approach). While the bias of the parameter estimates is quite small for 
LMS, QML, and the constrained approach, the unconstrained approach 
overestimates the latent variances. Nevertheless, the latent covariance of the latent 
predictor variables (21 = .00) is estimated on average correctly by all approaches.  

 

Table 5. Performance of LMS, QML, the constrained and the unconstrained approach for 
estimating the latent variances and covariance 11, 21,   when predictors are 

uncorrelated (21 = .00). 

21 = .00 

Parameter True Value M Bias SD SE SE-Bias 

LMS 

11 1.00 0.996 -0.40% 0.089 0.089 0.00% 

21 0.00 0.002 n.d. 0.052 0.054 3.85% 

22 1.00 0.994 -0.60% 0.085 0.088 3.53% 

       

QML 

11 1.00 1.001 0.10% 0.087 0.089 2.30% 

21 0.00 -0.001 n.d. 0.056 0.054 -3.57% 

22 1.00 1.008 0.79% 0.086 0.089 3.49% 

              

Extended Constrained Approach 

11 1.00 1.039 3.75% 0.098 0.037 -62.24% 

21 0.00 0.000 0.00% 0.061 0.020 -67.21% 

22 1.00 1.032 3.10% 0.095 0.037 -61.05% 

              

Extended Unconstrained Approach 

11 1.00 1.152 15.20% 0.091 0.064 -29.67% 
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21 0.00 0.000 0.00% 0.054 0.041 -31.71% 

22 1.00 1.146 14.60% 0.090 0.063 -30.00% 

n.d. = not defined 
 
Study 2 
With multicollinearity in the data (21 = .50), there are now some important 
differences in the performance of the methods. As is obvious (see Table 6), the 
extended unconstrained approach now shows a somewhat lower performance in 
detecting nonlinear effects than the other approaches. A major finding is that the 
estimated standard errors (SE) of the extended constrained approach underestimate 
the true standard errors (SD) by about 10% when the predictor variables are 
correlated while the other three approaches do not show substantial 
underestimation. Power is now lower for all approaches indicating that larger 
sample sizes may be needed for nonlinear analyses with correlated predictors that 
include all three nonlinear effects.  

The mean estimates of the nonlinear effects are unbiased for all approaches 
with the exception of the unconstrained approach which overestimates the latent 
quadratic effects by 4% - 5%. While the true standard errors (SD) of the parameter 
estimates of LMS, QML, and the extended constrained approach are almost 
identical, the parameter estimates of the unconstrained approach are less precise 
which implies higher true standard errors. The standard errors estimated by the 
extended constrained and the extended unconstrained approach substantially 
underestimate the true standard errors (SD) of the estimators of all nonlinear 
parameters, so that hypothesis testing using estimated standard errors for 
confidence intervals can be fallible and spurious effects may be produced.  
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Table 6. Performance of LMS, QML, the constrained and the unconstrained approach for 
estimating the nonlinear effects 12, 11, 22 when predictors are correlated (21 = .50). 

21 = .50 

Parameter True 
Value 

M Bias SD SE SE-Bias True 
Power 

LMS 

12 0.20 0.197 -1.52% 0.070 0.070 0.00% 78.60% 

11 0.10 0.100 0.00% 0.046 0.044 -4.35% 60.60% 

22 0.10 0.102 1.96% 0.045 0.044 -2.22% 60.40% 

                

QML  

12 0.20 0.199 -0.50% 0.071 0.070 -1.41% 78.16% 

11 0.10 0.100 0.00% 0.047 0.044 -6.38% 58.98% 

22 0.10 0.100 0.00% 0.045 0.044 -2.22% 59.39% 

               

Extended Constrained Approach 

12 0.20 0.196 -2.00% 0.073 0.065 -10.96% 74.40% 

11 0.10 0.103 3.00% 0.045 0.041 -8.89% 63.60% 

22 0.10 0.102 2.00% 0.046 0.041 -10.87% 60.00% 

               

Extended Unconstrained Approach 

12 0.20 0.197 -1.50% 0.078 0.074 -5.13% 71.60% 

11 0.10 0.105 5.00% 0.048 0.047 -2.08% 59.00% 

22 0.10 0.104 4.00% 0.049 0.046 -6.12% 56.80% 

 
The estimates of the latent variances and the covariance are comparable to the 

estimates of the analysis with uncorrelated predictors. Bias of the parameter 
estimates is again quite small for LMS, QML, and the constrained approach, while 
the unconstrained approach overestimates the latent variances - a result that seems 
to be independent of the amount of multicollinearity in the data. Nevertheless, the 
latent covariance of the latent predictor variables (21 = .50) is again estimated 
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correctly by all approaches. Overestimation of the latent variances implies that the 
latent correlations are underestimated: The estimated latent correlation of the 
constrained approach is .48, the estimated latent correlation of the unconstrained 
approach is .43. 

Table 7. Performance of LMS, QML, the constrained and the unconstrained approach for 
estimating the latent variances and covariance when predictors are correlated (21 = .50). 

21 = .50 

Parameter True Value M Bias SD SE SE-Bias 

LMS  

11 1.00 0.997 -0.30% 0.088 0.089 1.14% 

21 0.50 0.496 -0.81% 0.058 0.062 6.90% 

22 1.00 0.996 -0.40% 0.092 0.088 -4.35% 

             

QML  
11 1.00 0.998 -0.20% 0.088 0.085 -3.41% 

21 0.50 0.496 -0.81% 0.059 0.056 -5.08% 

22 1.00 0.996 -0.40% 0.092 0.084 -8.70% 

             

Extended Constrained Approach 

11 1.00 1.029 2.90% 0.097 0.036 -62.89% 

21 0.50 0.494 -1.20% 0.068 0.022 -67.65% 

22 1.00 1.032 3.20% 0.093 0.036 -61.29% 

             
Extended Unconstrained Approach 

11 1.00 1.149 14.90% 0.093 0.063 -32.26% 

21 0.50 0.504 0.80% 0.063 0.045 -28.57% 

22 1.00 1.150 15.00% 0.091 0.063 -30.77% 

 
 

While there is no bias of the parameter estimators of LMS, QML, and the 
constrained approach, the extended unconstrained approach overestimates the 
latent variances by more than 14%. Both LISREL approaches again produce 
estimates of the parameters less precisely than LMS and QML because the true 
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standard errors (SD) are larger than those of LMS and QML, and the estimated 
standard errors (SE) are again severely underestimated by both LISREL 
approaches similar to the results for uncorrelated latent predictor variables. While 
the standard error estimates (SD) of the extended unconstrained approach were 
underestimated by the SE by about 30%, the extended constrained approach 
underestimated the standard errors by more than 60%. 

DISCUSSION 

Our simulation studies revealed the important results that all four estimation 
approaches are able to estimate the nonlinear effects without bias, but that there 
exist substantial differences between the methods with regard to the standard errors 
and the latent variances and covariances. As could be expected for the extended 
constrained approach, standard errors of the nonlinear effects are underestimated 
when the predictor variables are correlated (cf. Marsh et al., 2004; Jöreskog & 
Yang, 1996; Kelava et al., 2008; Schermelleh-Engel et al., 1998). In contrast to 
LMS and QML, the standard errors of the latent variances and covariances of both 
LISREL approaches are underestimated to a large extent, namely by more than 
30% - 60%, so that the efficiency for these estimators is quite low.  

The efficiency of a parameter estimator corresponds to its true standard error (SD): 
a low true standard error indicates high efficiency. Thus, the standard error (SD) of 
an estimator is a measure of its precision, and the lower the standard error (the 
higher the efficiency), the higher is the power or detection capability for true 
effects (i.e., the lower is Type II error) of the estimator. The LMS and QML 
estimators of all parameters are clearly most efficient under the two investigated 
conditions. The estimators of the LISREL approaches are about as efficient as the 
LMS and QML estimators when the predictors are uncorrelated, but the true 
standard deviations of the latent variances and covariance of the linear predictors 
are always underestimated to a large extent.  

Multicollinearity plays an important role in the analyses of nonlinear SEM. As 
Klein et al. (2009) demonstrated using simulation studies, latent interaction effects 
may be overestimated when the quadratic effects are not estimated simultaneously 
together with the interaction effect. If multicollinearity is present in the data, i.e., 
when linear predictors as well as nonlinear terms are correlated, estimates of the 
nonlinear effects are still unbiased for all approaches, but the power to detect these 
effects is definitely lower for all approaches than in the uncorrelated condition so 
that Type II errors are larger. The problem of low true power is more apparent for 
both LISREL approaches. Concerning the extended constrained approach, true 
standard errors are grossly underestimated: While power may be too low to detect 
nonlinear effects reliably, the confidence interval around the parameter estimates 
looks very small caused by underestimated standard errors so that effects would be 
erroneously judged too often to be significant.  

There are of course some limitations to this study that should be noted:  
– First, an important limitation is that only normally distributed variables were 

generated in the simulation study, while empirical data often have the problem 
that they are nonnormally distributed. Nonnormality would lead to essential 
multicollinearity between the nonlinear terms that cannot be reduced by 
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centering predictor variables. Therefore it can be expected that differences 
between the approaches will be larger when nonnormal variables are used.  

– Second, all generated variables were interval-scaled while in empirical 
applications often ordinal-scaled variables are used. It would be of interest to 
investigate whether LMS and QML would behave differently because QML as a 
more robust method may be able to deal with this problem better than LMS.  

– Third, in our simulation study we used a modified and extended version of the 
Jöreskog and Yang (1996) approach. While Jöreskog and Yang proposed to use 
all possible products of indicators, we followed Marsh et al.’s (2004) suggestion 
and used only three indicators for each latent construct. Therefore we cannot tell 
whether the inclusion of all possible product indicators would have resulted in a 
different performance of this approach. 
Future research needs to be carried out to further investigate the practical 

applicability of LMS and QML for more complex models and to further investigate 
possible differences between both approaches. For example, in empirical research 
it may be of interest to investigate models with more than three nonlinear effects, 
e.g., three interaction effects and three quadratic effects. Until now, we do not 
know anything about the performance of the approaches to deal with such complex 
models.  

In summary, the results of the Monte Carlo study indicate the following:  
– Applied researchers should use nonlinear SEM when nonlinear relations are 

hypothesized.  
– LMS implemented in Mplus as well as QML both estimate the nonlinear effects 

reliable and most efficient. The approaches are equally well suited for the 
analysis of latent interaction and quadratic effects.  

– Both LISREL approaches performed quite well when the linear predictors were 
uncorrelated. In order to reduce nonessential multicollinearity, the means of the 
latent predictors - but not the means of the latent nonlinear terms – should 
always be fixed to zero. While the syntax of the extended constrained 
approach using the LISREL program is quite complicated and error-prone, the 
syntax of the extended unconstrained approach is much easier to set up. But the 
advantage of the unconstrained approach that the complicated nonlinear 
constraints are eliminated is offset by the disadvantage of overestimated latent 
variances and covariances so that standardized effects may be underestimated.  

– When there is multicollinearity in the data, LMS and QML should be preferred 
to the LISREL approaches.  

NOTES 
 
 
1  Please note that the nonlinear terms should never be normalized, standardized, or centered (cf. Aiken 

& West, 1991). 
2  Interaction and quadratic terms are always nonnormally distributed: Even if linear predictor 

variables are normally distributed, the distributions of nonlinear terms are always highly kurtotic, 
and additionally the distribution of a quadratic term is censored below at zero (cf. Dimitruk et al., 
2007). 
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Appendix A: Syntax Files 
 
A1 - LMS 
 
Title: Full Nonlinear Model 
 
DATA: FILE = LMS.dat; 
 
VARIABLE: NAMES ARE Y1 - Y3 X1-X6; 
 
ANALYSIS: TYPE = RANDOM; 
 ALGORITH = INTEGRATION; 
 ITERATIONS = 300; 
 
MODEL: f1 BY X1 X2 X3; 
 f2 BY X4 X5 X6; 
 f3 BY Y1 Y2 Y3; 
 
 f1f2 | f1 XWITH f2; 
 f1f1 | f1 XWITH f1; 
 f2f2 | f2 XWITH f2; 
 f3 on f1 f2 f1f2 f1f1 f2f2; 
 
OUTPUT: tech1; tech8; 
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A2 - QML (Klein & Muthén, 2007) 
 
% Full Nonlinear Model 
 
%Raw Data 
$RD 
QML.dat 
 
%Parameter Output 
$PO 
QML.par 
 
%Standard Error Output 
$SO 
QML.std 
 
%Sample Size 
$SA 
400 
 
%Number of Data Sets 
$DS 
1 
 
%Number of x-variables 
$q 
6 
 
%Number of y-variables 
$P 
3 
 
%Number of Ksis 
$N 
2 
 
%Gamma 
$GA 
* * 
 
%Omega 
$Om 
* * 
0 * 
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%Restriction Omega (for Model Difference Test) 
$RO 
0 0 
0 0 
 
%Restriction Gamma (for Model Difference Test) 
$RG 
* * 
 
%Theta Delta 
$TD 
* 0 0 0 0 0 
0 * 0 0 0 0 
0 0 * 0 0 0 
0 0 0 * 0 0 
0 0 0 0 * 0 
0 0 0 0 0 * 
 
%Psi 
$PS 
* 
 
%Theta Epsilon 
$TE 
* 0 0 
0 * 0 
0 0 * 
 
%Lambda x 
$LX 
1 0 
* 0 
* 0 
0 1 
0 * 
0 * 
 
 
%Lambda y 
$LY 
1 
* 
* 
 
END 
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A3 – Constrained Approach Extended for Multiple Nonlinear Effects 
 
!Full Nonlinear Model - Extended Constrained Approach 
DA NI=18 NO=400  
RA FI=Constrained.dat 
LA 
Y1 Y2 Y3 X1 X2 X3 X4 X5 X6 X1X4 X2X5 X3X6 X1X1 X2X2 X3X3 X4X4 
X5X5 X6X6 
 
MO NY=3 NX=15 NE=1 NK=5 LY=FU,FR LX=FU,FR GA=FU,FR PH=SY 
TE=DI,FR TD=SY PS=DI,FR AL=FR KA=FI 
 
LK 
KSI1 KSI2 KSI1KSI2 KSI1KSI1 KSI2KSI2 
 
LE 
ETA 
 
PA LY 
0 
1 
1 
VA 1 LY(1,1) 
 
PA LX 
0 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 0 0 0 0 
0 1 0 0 0 
0 1 0 0 0 
0 0 0 0 0 
0 0 1 0 0 
0 0 1 0 0 
0 0 0 0 0 
0 0 0 1 0 
0 0 0 1 0 
0 0 0 0 0 
0 0 0 0 1 
0 0 0 0 1 
VA 1 LX(1,1) LX(4,2) LX(7,3) LX(10,4) LX(13,5) 
 
!constrained nonlinear factor loadings 
CO LX(8,3)=LX(2,1)*LX(5,2)  ! 2. interaction indicator X2X5 
CO LX(9,3)=LX(3,1)*LX(6,2)  ! 3. interaction indicator X3X6 
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CO LX(11,4)=LX(2,1)*LX(2,1)  ! 2. Quad1 indicator X2X2 
CO LX(12,4)=LX(3,1)*LX(3,1)  ! 3. Quad1 indicator X3X3 
CO LX(14,5)=LX(5,2)*LX(5,2)  ! 2. Quad2 indicator X5X5 
CO LX(15,5)=LX(6,2)*LX(6,2)  ! 3. Quad2 indicator X6X6 
 
PA PH 
1 
1 1 
0 0 1 
0 0 1 1 
0 0 1 1 1 
 
!constrained nonlinear variances and covariances 
CO PH(3,3)=PH(1,1)*PH(2,2)+PH(2,1)**2 ! variance KSI1*KSI2 
CO PH(4,3)=2*PH(1,1)*PH(2,1)   ! covariance KSI1*KSI2,KSI1*KSI1 
CO PH(5,3)=2*PH(2,2)*PH(2,1)   ! covariance KSI1*KSI2,KSI2*KSI2 
CO PH(4,4)=2*PH(1,1)**2     ! variance KSI1*KSI1 
CO PH(5,4)=2*PH(2,1)**2    ! covariance KSI1*KSI1,KSI2*KSI2 
CO PH(5,5)=2*PH(2,2)**2     ! variance KSI2*KSI2 
 
PA KA 
0 0 1 1 1 
 
!constrained latent means 
CO KA(3)=PH(2,1)    !mean of Interaction term 
CO KA(4)=PH(1,1)    !mean of Quad1 term 
CO KA(5)=PH(2,2)    !mean of Quad2 term 
 
! constrained error variances  
CO TD(7,7)=PH(1,1)*TD(4,4)+PH(2,2)*TD(1,1)+TD(1,1)*TD(4,4) !error var. 
X1X4 
CO TD(8,8)=LX(2,1)**2*PH(1,1)*TD(5,5)+LX(5,2)**2*PH(2,2)*TD(2,2) 
+TD(2,2)*TD(5,5)                 !error var. X2X5 
CO TD(9,9)=LX(3,1)**2*PH(1,1)*TD(6,6)+LX(6,2)**2*PH(2,2)*TD(3,3)  
+ TD(3,3) *TD(6,6)                 !error var. X3X6 
CO TD(10,10)=4*PH(1,1)*TD(1,1)+2*TD(1,1)**2     !error var. X1X1 
CO TD(11,11)=4*LX(2,1)**2*PH(1,1)*TD(2,2)+2*TD(2,2)**2 !error var. X2X2 
CO TD(12,12)=4*LX(3,1)**2*PH(1,1)*TD(3,3)+2*TD(3,3)**2 !error var. X3X3 
CO TD(13,13)=4*PH(2,2)*TD(4,4)+2*TD(4,4)**2     !error var. X4X4 
CO TD(14,14)=4*LX(5,2)**2*PH(2,2)*TD(5,5)+2*TD(5,5)**2 !error var. X5X5 
CO TD(15,15)=4*LX(6,2)**2*PH(2,2)*TD(6,6)+2*TD(6,6)**2 !error var. X6X6 
 
! constrained error covariances 
CO TD(10,7)= 2*PH(2,1)*TD(1,1)        !error cov. X1X4,X1X1 
CO TD(11,8)= 2*LX(2,1)*LX(5,2)*PH(2,1)*TD(2,2) !error cov. X2X5,X2X2 
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CO TD(12,9)= 2*LX(3,1)*LX(6,2)*PH(2,1)*TD(3,3) !error cov. X3X6,X3X3 
CO TD(13,7)= 2*PH(2,1)*TD(4,4)        !error cov. X1X4,X4X4 
CO TD(14,8)= 2*LX(2,1)*LX(5,2)*PH(2,1)*TD(5,5) !error cov. X2X5,X5X5 
CO TD(15,9)= 2*LX(3,1)*LX(6,2)*PH(2,1)*TD(6,6) !error cov. X3X6,X6X6 
 
OU ME=ML IT=500 AD=OFF ND=3 RS  
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A4 – Unconstrained Approach Extended for Multiple Nonlinear Effects 
 
!Full Nonlinear Model - Extended Unconstrained Approach 
DA NI=18 NO=400 
RA FI=Unconstrained.dat 
LA 
Y1 Y2 Y3 X1 X2 X3 X4 X5 X6 X1X4 X2X5 X3X6 X1X1 X2X2 X3X3 X4X4 
X5X5 X6X6 
MO NY=3 NE=1 NX=15 NK=5 LY=FU,FI LX=FU,FI PH=SY,FR TE=DI,FR 
TD=SY,FI PS=FU,FR AL=FR KA=FI 
LE 
ETA 
LK  
KSI1 KSI2  KSI1KSI2  KSI1KSI1  KSI2KSI2 
PA PH 
1 
1 1 
0 0 1 
0 0 1 1 
0 0 1 1 1 
 
VA 1 LY(1,1) 
FR LY(2,1) LY(3,1) 
VA 1 LX(1,1) LX(4,2) LX(7,3) LX(10,4) LX(13,5) 
FR LX(2,1) LX(3,1) LX(5,2) LX(6,2) LX(8,3) LX(9,3)  
FR LX(11,4) LX(12,4) LX(14,5) LX(15,5)  
FR GA(1,1) GA(1,2) GA(1,3) GA(1,4) GA(1,5) 
 
PA KA 
0 0 1 1 1 
 
!constrained latent means 
CO KA(3)=PH(2,1) !mean of latent interaction term 
CO KA(4)=PH(1,1) !mean of first latent quadratic term 
CO KA(5)=PH(2,2) !mean of second latent quadratic term 
 
! error variances  
FR TD(1,1) TD(2,2) TD(3,3) TD(4,4) TD(5,5) TD(6,6)  
FR TD(7,7)  !measurement error variance X1X4 
FR TD(8,8)  !measurement error variance X2X5 
FR TD(9,9)  !measurement error variance X3X6 
FR TD(10,10) !measurement error variance X1X1 
FR TD(11,11) !measurement error variance X2X2 
FR TD(12,12) !measurement error variance X3X3 
FR TD(13,13) !measurement error variance X4X4 
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FR TD(14,14) !measurement error variance X5X5 
FR TD(15,15) !measurement error variance X6X6 
 
! error covariances 
FR TD(10,7) ! measurement error covariance X1X4_X1X1 
FR TD(11,8) ! measurement error covariance X2X5_X2X2 
FR TD(12,9) ! measurement error covariance X3X6_X3X3 
FR TD(13,7) ! measurement error covariance X1X4_X4X4 
FR TD(14,8) ! measurement error covariance X2X5_X5X5 
FR TD(15,9) ! measurement error covariance X3X6_X6X6 
 
PD 
OU ME=ML IT=500 ND=3 RS 
 
 


