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Lecture 3: Multi-group (cross-national, cross-national) analysis in SEM and GSEM 

A traditional concern in cross-national analysis has been the invariance of (measurement) models 

between different societies. The traditional wisdom in this literature has been that you need to 

measure your concept in an identical way, before you can even start to compare parameters across 

contexts. (The contexts could be countries, but also men and women, different ethnic groups, 

different time periods, cohorts, etc.). I take issue with this wisdom on the following grounds1: 

• The invariance-testing literature is overly concerned with testing the null-hypothesis of NO 

difference in measurement models. Notice the difference in expectations: usually, we would 

hope to reject the H0, in invariance testing we would hope to NOT to reject H0. Small differences 

to the H0 situation should not bother us (in particular not when we have much power in our 

model), but the invariance-testing literature they do. One should rather look at variations in 

quantities of interest (such as means, structural coefficients) under different invariance 

scenario’s, instead of the fit or test statistics. 

• Measurement invariance is more important to estimating latent means than for estimating 

latent structural coefficients. In fact, I would recommend always to interpret half or fully 

standardized models, on the assumption that your different groups represent the underlying 

units in a conceptually similar way. This point of view is particularly relevant when comparing 

countries, using nationally representative samples. In completely standardized models, latent 

means vanish, all of the interest is in the latent correlational structures. 

• In many applications a good case can be made for allowing differences in measurement models. 

E.g. what is exactly the problem if in one country the crude occupation measure would be a 

better measure of latent occupational status than the detailed measure, but in another country 

it would be the other way around? I see no problem in comparing structural coefficients, in 

particular not if these are completely standardized. 

Invariance 

The invariance-testing literature distinguishes four scenario’s: 

• Configural invariance: the same pattern of factor loadings (in a multifactorial structure) is 

applied. 

 
1 These issues are discussed in a similar way by: Davidov, E., Meuleman, B., Cieciuch, J., Schmidt, P., & Billiet, J. (2014). 

Measurement Equivalence in Cross-National Research. Annual Review of Sociology, 40(1), 55–75. 

http://doi.org/10.1146/annurev-soc-071913-043137 

 



• Metric invariance: the measurement coefficients (‘factor loadings’) are constrained to be the 

same. This would make for the strict comparability of latent variances and structural 

coefficients. 

• Scalar invariance: the residual variances of the measurement effects are constrained to be the 

same. This would make for the strict comparability of latent means. 

• Error invariance: the residual variances of the latent variables are constrained to be the same. 

Stata SEM includes two set of tools to implement these constraints: by keywords, and by group 

specification. 

The keywords can follow a ginvariant statement on the options part: 

scoef  Structural coefficients 

scons  Structural intercepts 

mcoef  Measurement coefficients 

mcons  Measurement intercepts 

serrvar Structural error covariances 

merrvar Measurement error covariances 

smerrvar Covariances between structural and measurement errors 

meanex means of exogenous variables 

covex  covariances of exogenous variables 

all  all of the above 

none  none of the above 

The default is: sem (..), group(..) ginvariant(mcoeff mcons) 

The group specific model can be generated in the following way: 

by cnr: sem (FOCC -> zfisei) (FOCC -> zfosei) (OCC1 -> zisei1) (OCC1 -> zosei1), var(FOCC@1) 

var(OCC1@1) covar(e.zfosei*e.zosei1) iterate(50) 

(The model does not converge for LV – Latvia. There may be something fishy about the fosei data in 

this country.) 

Alternatively, we could have run: 

sem (FOCC -> zfisei) (FOCC -> zfosei) (OCC1 -> zisei1) (OCC1 -> zosei1), var(FOCC@1) var(OCC1@1) 

covar(e.zfosei*e.zosei1) iterate(50) group(cnr) 



we can build up de model until (which illustrated how to make implement invariance by group: 

specification: 

sem (FOCC -> zfisei@c) (FOCC -> zfosei@d) (OCC1 -> zisei1@c) (OCC1 -

> zosei1@d) , var(FOCC@1) var(OCC1@1) iterate(50) group(cnr) 

covar(1: e.zfosei*e.zosei1@a) covar(2: e.zfosei*e.zosei1@a) covar(3: 

e.zfosei*e.zosei1@a)covar(4: e.zfosei*e.zosei1@a)covar(5: 

e.zfosei*e.zosei1@a)covar(6: e.zfosei*e.zosei1@a)covar(7: 

e.zfosei*e.zosei1@a)covar(8: e.zfosei*e.zosei1@a)covar(9: 

e.zfosei*e.zosei1@a)covar(10: e.zfosei*e.zosei1@a) ginvariant(mcons 

mcoef merrvar) var(e.zfisei@ee) var(e.zfosei@ee) var(e.zisei1@ee) 

var(e.zosei1@ee) 

Table 3.1 gives an overview of some of the models estimates on the double occupation 

measurement model. Note in particular the step towards metric invariance (almost insignificant) and 

then the step towards scalar invariance (very significant). Despite the spectacular difference 

between these steps, the structural parameter of interest (the latent correlation between father’s 

and first occupation) hardly changes, however we constrain the measurement part of the model. 

Not only the rank order of countries remains essentially unchanged, also the numerical values of this 

correlation, even is we constrain the measurement of father’s and first occupation to be the same, 

or the measurement quality of crude and detailed measurement. 

Multilevel modelling in GSEM 

Stata SEM cannot do multilevel models, but generalized GSEM claims it can. However, GSEM is 

primarily targeted at doing another thing, which is the generalized linear model  (GLM) for 

(observed) response variables and allows for a link function and a variety of distribution of the error 

terms. This allows you to use (binomial, multinomial, ordered) logistic tegression or poisson 

regression to model the relationship between latent and observed variables. However, GSEM cannot 

do: 

• MLMV 

• Group comparisons 

• Standardized solutions 

• Multilevel with latent variables 

Of course, the last option is in particular what we had hoped for. What remains is possibility to 

estimate multilevel models on observed models. Stata’s main alternative here is ME (mixed 

estimation), which is considerably easier to handle. GSEM would offer opportunities to multilevel 

estimates In mediation models, but this is not very much of an extension. To show how you fit a very 

simple multilevel model with a cross-level interaction between fisei → isei1 and a mystery country 

level variable hg, consider the following models: 

generate fisei_hg = fisei*hg 

regr isei1 fisei fisei_hg i.cnr 



regr isei1 fisei fisei_hg i.cnr, cluster(cnr) 

xtreg isei1 fisei fisei_hg i.cnr 

xtreg isei1 fisei fisei_hg i.cnr, cluster(cnr) 

mixed isei1 fisei fisei_hg || cnr: 

mixed isei1 fisei fisei_hg || cnr: , robust cluster(cnr) 

gsem (isei1 <- fisei fisei_hg M1[cnr]) 

gsem (isei1 <- fisei fisei_hg M1[cnr]), vce(cluster cnr) 

Using meta-analysis as an alternative to multi-level models 

The multi-level model for cross-country comparisons has recently come under attack for the case of 

low N (such as 10 countries). Bryan & Jenkins (2016)2 basically repeat the warnings about low-N 

situations that you cannot trust analytical statistics, based on normality assumptions. Remember the 

warning in your introductory statistics course that the z-test should be replaced by a t-test if N < 30 

(or even N < 100), and calculate exact statistics for even smaller N. Bryan & Jenkins (2016) 

recommend to give up on the complicated machinery of multilevel programming for low N cases and 

replace it by meta-analysis, consisting of the following steps: 

• Obtain level-1 coefficients in a individual level analysis, which could be obtained by splitting the 

file, or some group() specification in SEM. 

• Write the estimates, together with their associated SE, to a level-2 file. 

• Analyze the level-2 data using 1/(se*se) as a weight. [You can also use the context N as analytical 

weight.] 

Meta-analysis is commonly used for combining results from independent research project, e.g. a 

series of randomized trials in medical testing. Stata has specific ados file for it: metan and 

metareg, but it also works without. 

cntry bbb se hg www1 www2 n0 n1 

BE 0.317 0.037 3 730.46 27.03 763 651 

CH 0.429 0.029 8 1189.06 34.48 887 792 

CZ 0.335 0.037 7 730.46 27.03 849 728 

HU 0.496 0.035 10 816.33 28.57 776 693 

IT 0.340 0.039 6 657.46 25.64 730 651 

 
2 Bryan, M. L., & Jenkins, S. P. (2016). Multilevel Modelling of Country Effects: A Cautionary Tale. European Sociological 

Review, 32(1), 3–22. http://doi.org/10.1093/esr/jcv059. The point was earlier made by: Maas, C. J. M., & Hox, J. J. (2005). 

Sufficient sample sizes for multilevel modeling. Methodology, 1(3), 86–92. http://doi.org/10.1027/1614-2241.1.3.86 

 

 

http://doi.org/10.1093/esr/jcv059


LV 0.180 0.042 2 566.89 23.81 706 578 

NL 0.280 0.033 5 918.27 30.30 826 747 

RU 0.322 0.036 4 771.61 27.78 1027 728 

TR 0.362 0.042 9 566.89 23.81 1202 730 

UA 0.279 0.031 1 1040.58 32.26 1378 1138 

 

bbb:  effect of fisei → isei1 

se: associated SE 

hg: mysterious variable, predicting social reproduction 

n0 Initial N per country (pairwise) 

n1 Final N per country (listwise) 

www1 1/(se*se) 

www2 1/se 

We can see the very strong relationship between bbb and hg in the following graph: 

 gr7 bbb hg, s([cntry]) 
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A meta-analytical model can be obtained by: 

bootstrap, reps (2000): regr bbb hg 

regr bbb hg [w=www1] 



(This recovers more or less the coefficients of the multilevel analysis, with similar SE / t-values.) 

Meta-analysis can be applied on all sorts of coefficients, including effects between latent variables. 

Additional features of the procedure are: 

• It is quick and easy to understand/ 

• It can accommodate a number of complicated models at level-2 data that otherwise would be 

beyond reach (such as XT panel models). 

• It can accommodate simulation based sampling distributions, using bootstrap of 

jackknife. 

• It makes you feel modest, because you suddenly see that you have no more than 10 cases to 

work on, and you would need an effect as strong as r > 0.65 to see some significant trend in your 

data. Nobody told you this in multilevel class. 



 

Table 3.1: Structural parameters (latent correlation between father’s and first 
occupation), estimated with various constraints of the measurement model. 
 

 A B C D E F G 

Constraints none mcoef 
 

covar 
mcoef 
ncons 

merrvar 

FOCC 
== 

OCC1 

osei == 
isei 

errors 
Invariant 

DF ?? 54 63 99 101 102 104 

L2 ?? 87.1 95.1 428.1 465 466 473.20 

        

CH 0.564 0.539 0.541 0.562 0.568 0.569 0.567 

HU 0.556 0.522 0.522 0.552 0.562 0.561 0.560 

TR 0.480 0.484 0.497 0.456 0.455 0.458 0.455 

CZ 0.446 0.438 0.441 0.429 0.441 0.443 0.442 

BE 0.404 0.387 0.386 0.398 0.400 0.403 0.402 

IT 0.402 0.394 0.395 0.403 0.411 0.412 0.411 

RU 0.396 0.389 0.390 0.376 0.395 0.395 0.395 

NL 0.388 0.402 0.399 0.373 0.380 0.379 0.377 

UA 0.363 0.373 0.374 0.369 0.360 0.361 0.358 

LV 0.246 0.237 0.233 0.244 0.241 0.243 0.242 

        

Covar(crude) Var var 0.028 0.032 0.028 0.026 0.025 

A: Configural invariance 

B: Metric invariance 

C: Metric invariance + invariant method effect 

D: Scalar invariance 

E: Scalar invariance + invariance of measurement model for the two occupations 

E: Scalar invariance + invariance of measurement model for the two occupations + 

invariance for the two indicators 

 


