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Standardized parameter estimates for the structural model are pre:
sented in Figure 7.7. As shown, both risk perceptions (B = —43,p <
.01) and willingness to participate in health and safety programs
(B =.34, p < .01) were predicted by perceived health and safety climate,
Risk perceptions (B = .45; p < .01) but not willingness to participate
(B = .18, ns) were predicted by respondents’ accident history.

Deleting the nonsignificant path from the model did not result in a
significant change to model fit, [y ditference(1) = 1.70, ns]. :

8 Concluding
Comments

CHAPTER

In previous chapters, we considered the logic and mechanics of structural
equation modeling with specific reference to the three most common
versions of structural equation models: confirmatory factor analysis,
observed variable path analysis, and latent variable path analysis. In this
final chapter, I introduce two useful extensions to the procedures
discussed thus far.

Single Indicator Latent Variables

As a general rule, one should strive for at least two or three indicators
(observed variables) for every latent variable. Following this guideline
generally will steer you clear of the shoals of underidentified models. In
some cases, this rule must be violated because of either lack of available
data or lack of forethought.

Unfortunately, we are sometimes stuck with only one indicator for a
construct. Two solutions to this dilemma are possible. First, one can divide
the scale items to form multiple indicators, as was done in the previous
chapter. The second solution is to declare a latent variable with only one
indicator. This is bound to leave us with an identification problem
(trying to estimate both a unique and a common factor loading as well
as the variance for one construct using only one indicator). The solution
is to FIx the common (LY) and unique (TE) factor loadings at predeter-
mined values and to estimate only the variance of the latent variable.
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 Specifically, we fixed the common factor loading (in the LY matrix
to be equal to the product of the reliability (alpha) and the standard
deviation. If you understand reliability to measure the proportion o
true score variance in a scale, this procedure essenttally says X% of the
variance in the observed score is true score variance. The unique factor
loading (the diagonal element in the TE matrix) was fixed at a value
equal to 1 - reliability x variance of the observed score. Again, this is
s1rnply an estimate of the percentage of error variance, which is all that
is represented by the unique factor loading.
The one remaining case is when your single indicator is not a scale
and you do not have any estimate of reliability for the variable. Fixing
the factor loadings usually provides a workable solution to this proble
In this case, you only have to fix the common factor loading to equal 1
and the unique factor loading to equal 0 (assuming perfect reliability i
the single item) to duplicate the procedure described above.

Simplifying Complex Models

If you recall the example of latent variable path analysis given abov
you will remember that the LISREL code is rather complex. In form:
lating a model this way, you must keep track of the forms of all eig
LISREL matrices at the same time. Moreover, you must keep track
the status (fixed, free) of every element in those matrices.

There is a way to reduce the cognitive complexity of latent variab
models. Essentially, the procedure is to ignore the X-variable side of
LISREL model and to use only the Y side. As an illustration, below a
two alternate model statements. Both describe exactly the same mod
and are mathematically equivalent (more important, they result in th
same output).

MO NX =7 NK =
GA = FU,FI
MO NY = 12 NE = 5 PS = SY,FI BE = FU,FI TE = SY,FI

3 NY =5NE=2PH=>5TPS = DI,FR BE = FU,FI

Note that both model statements reference 12 observed variables an
five latent variables. The major differences are that I have eliminated :
reference to the X variable matrices (LX, PH, TD) in the seco
statement, reducing my model to only four matrices (LY, BE, TE, ar
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PS). Also note that I have changed the specification of the PS matrix to
be symmetrical and fixed rather than diagonal and free. This will allow
me to estimate the correlations between the three exogenous variables
(previously represented in the PH matrix). Thus, the PS matrix will now
look like this:

Etad4

Etal Eta2 Eta3 Etas
Etal Free
Eta2 Fixed Free
Eta3 Fixed Fixed Free
Etad Fixed Fixed Free Free
Eta$ Fixed Fixed Free Free Free

The lines of code that would follow the second model statement
would free the diagonal elements for all latent variables (variances) and
free the covariances between the last three latent variables (which are
the exogenous variables). The code is as follows.

FR PS(1,1) PS(2,2) PS(3,3) Ps(4,4) PS(5,5)
FR PS(5,4) PS(5,3) PS(4,3)

The only difference this modification seems to make in the actual
analyses (aside from the reduced demands on short-term memory) is
that LISREL will report R? values for the exogenous variables, and these
values will always be zero. This is because you do not predict any of the
variance in three of the latent variables. Despite this minor difference,
fit indices and parameter estimates will be exactly the same either way
you set up the model.

Final Comments

Despite my somewhat tongue-in-cheek attitude, I have developed a great
deal of respect for the power of LISREL to address increasingly complex
research questions. In the foregoing, I have tried to illustrate some of
the main types of questions that can be asked and answered using
LISREL.

It is important to note that I have focused on the mechanics rather
than the mathematical derivation or logical rigor of LISREL analyses.
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Although this approach suited my goals in writing a researcher’s guide,
please be aware that I have glossed over many of the fine points of using
LISREL. Ileave you with the task of exploring these issues in more depth
and the suggestion that the reference list following this chapter provides
a good starting point for this exploration.
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Index

Absolute Fit, 23
indices of, 24-29
Adjusted Goodness of Fit Index (AGFI),
27
Akaike Information Criterion (AIC),
32-33
Augmented moment matrix (AM), 47

Beta (BE) matrix, 44

Causality, 8,9
Chi-square, 24-26
and degrees of freedom ratio, 28
difference test, 36-37, 39
Coefficient of Determination, See R2
Comparative fit, 23, 29-32
Comparative Fit Index (CFI), 31
Condition 9 tests, 28-29
Condition 10 tests, 28
Confirmatory factor analysis, 2, 10
example of, 54-80
rival model specifications in, 33-35
Consistent Akaike Information Criterion
(CAIC), 32-33
Correlation matrix (KM), 47, 48
Covariance matrix, 19
CM, 47, 48

Cross-Validation Index, 31-32

Data (DA) keyword, 46
Discrepancy function, 26

Endogenous variables, 8

Equal (EQ), 51

Estimation, 7, 63-76, 87-101, 109-119,
122-130

Exogenous variables, 8

Expected Value of the Cross Validation
Index (ECVI), 32

Exploratory factor analysis, 2

Fitting criteria. See Model fit
Fixed elements, 42
FI, 51
Free elements, 42
FR, 51
Full information techniques, 18-19

Gamma (GA) matrix, 44
Generalized Least Squares, 18
Goodness of Fit Index (GFI), 27
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Identification, 7, 14-16, 62-63, 86,
108-109, 122

Incremental Fit Index (IFI), 31

Iterative estimation, 16

Just-identified models, 14

Labels:

LA, 47

LE, 51

LK, 51
Lagrange multiplier test, 38
Lambda X (LX) matrix, 43
Lambda Y (LY)matrix, 44
Latent variables, 10
Latent variable models, 2

example of, 102-134
LISREL:

keywords, 41-54

matrices, 41-45

Manifest variables. See Observed variables
Matrix (MA) keyword, 47
Matrix of moments (MM), 47, 48
Maximum Likelihood Estimation, 17-18
Means (ME), 49
Missing value (XM) keyword, 47
Model:
command (MO), 49
fit, 7, 8, 23-40, 76-78, 101, 119, 130
fitting criteria, 17
modification, 7, 20-22, 37-39, 101
specification, 7-14, 55-62, 81-86,
103-108, 119-122
Modification index, 38

NE, 43

Nested model comparisons, 33-37
NK, 43

Non-centrality parameter, 26, 31
. Non-normed Fit Index (NNFI), 30-31
Non-recursive models, 15

Normed Fit Index (NFI), 30

Number of groups (NG), 46

Number of input variables (NI),46

Number of observations (NO), 46
NX, 43
NY, 43

Observed variables, 11

Optimal scores matrix {OM), 47, 48
Ordinary Least Squares, 18

Output (OU), §1-53

Over-identified models, 14

Parsimonious fit, 23, 32
indices of, 32-33
Parsimonious Goodness of Fit Index
(PGFI), 32
Parsimonious Normed Fit Index (PNFI),
32

. Path analysis, 2

example of, 81-102

rival model specifications in, 35-37
Path diagrams, 9-14

rules for decomposing, 12
Phi (PH) matrix, 43
Polyserial correlations (PM), 47, 48
Psi (PS) matrix, 44

Raw Data (RA), 48
Rz, 28
Recursive models, 15
Relative Fit Index (RFI), 31
Respecification. See Model modification
Results:
guidelines for reporting, 78
confirmatory factor analysis, 79-80
latent variable models, 131-134
obsetved variable path analysis,
101-102
Root Mean Squared Error of
Approximation (RMSEA), 27
Root Mean Squared Residual (RMR),
27

Sample size, 20

Select (SE), 49

Simplifying complex models, 136-137
SIMPLIS, 42

Index

Single indicator latent variables, 135-136
Specification search. See Model
modification
Standard deviation (SD), 49
Strategy for assessing model fit, 39-40
Structural equation modeling, 1
model of 7

t-rule for model identification, 14
Theta-Delta (TD) matrix, 43
Theta-Epsilon (TE) matrix, 44
Theory, 5

building, 38

of reasoned action, 5, 18

trimming, 20-21, 38
Two-stage modeling, 106-107

Under-identified models, 15
Value (VA), 51

‘Wastebasket parameters, 21
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