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TABLE 6.1 Descriptive Statistics and Intercorrelations (2 = 202)

Mean SD 1 2 3

1. Participation 2.62 1.71 1.00
2. Willingness to
work for the union 10.32 3.88 0.47 1.00

7 Latent Variable
Path Analysis

"HAPTER

3. Union loyalty 20.00 5.55 0.39 0.71 1.00
4. Instrumentality beliefs 19.87 5.60 0.29 0.48 0.61
5. Subjective norms 18.09 9.99 0.29 0.53 0.51

a better fit to the data than did the original model, % ditterence(1) = 30.
p < .01; ¥*(4) = 2.80, ns; GFI = .99; AGFI = .98; RMSEA = .
NFI = .99; CFI = 1.00; PNFI = .40.

Standardized parameter estimates for the revised model are presente
in Figure 6.4. As shown, participation in union activities was predic
by willingness to work for the union (B = .47, p < .01), which in
was predicted by both union loyalty (B = .60, p < .01) and subject
norms (B = .22, p < .01). Union loyalty was predicted by both perc
tions of instrumentality (B = .49, p < .01) and subjective norms (
.32,p <.01). The model explained 229 of the variance in participati
549% of the variance in willingness to work for the union, and 46%
the variance in union loyalty.

he true power of structural equation modeling is the ability to
estimate a complete model incorporating both measurement and
uctural considerations. In this chapter, we consider such a latent
iable path analysis. Latent variable path analysis uses the full LISREL
jodel (all eight matrices) to combine measurement and structural
onsiderations. Thus, in conducting the analysis we will be equally
ncerned with assessing the proposed measurement relations (i.e.,
ough confirmatory factor analysis) and the proposed structural rela-
ns (i.e., through path analysis).

Note

1. Rank and order conditions refer to the identification of nonrecursive structu

models and will not be dealt with further. odel Spemﬁcatlon

.illustrate the use of latent variable path analysis, we will consider a

Subjective duced form of the model of perceived risk and participation in
Norms cupational health and safety programs presented by Cree and Kel-
4 way (in press). There are two components to the model. First, the
Ry uctural model specifies the predictive relationships among the latent
2 jables. Second, the measurement model defines how the latent

* riables are measured (i.e., represented by indicators).
4+ .eor+| Willingness The structural model we were interested in was based on the hypothe-
instrumentality |, Egi:?t | 1o Work 27| Participatio s that two factors, perceived health and safety climate and accident
e the Union oty, predicted perceived risk in the workplace, which in turn predicted
illingness to participate in health and safety programs (see Figure 7.1).

Figure 6.4.
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Figure 7.1.

In addition to the structural relations, we also were interested in usin
latent variables; that is, each construct in the model would be repr
sented by multiple indicators. Bentler (1980, p. 425) notes that

choosing the right number of indicators for each LV [latent variable] is
something of an art; in principle, the more the better; in practice, too
many indicators make it difficult if not impossible to fit a model to data.

Moreover, as noted in Chapter 5, Bollen (1989) has suggested that
confirmatory factor analysis model (which uses indicators to represen
latent variables or factors) should incorporate at least two indicators pe
latent variable. For each construct (latent variable) in the model, there
fore, we attempted to identify at least two observed indicators (actua
items).

Specifically, perceived health and safety climate was assessed wi
three scales that asked respondents to rate their perceptions of th
manager’s, supetvisor’s, and coworkers’ commitment to health an
safety in the workplace. Accident history was assessed by two questi
naires: one asking about the respondent’s own history with accident
the workplace and the other asking whether respondents had he
about or witnessed accidents in the workplace.

The endogenous variables also were measured with multiple indi
tors. Perceived risk in the workplace was measured by two question
naires asking respondents how risky they thought the workplace we
(a) for them personally and (b) for their coworkers. Finally, willingn
to participate in health and safety programs was measured by a 12-it
questionnaire assessing respondents’ willingness to participate in |
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variety of health and safety programs. Because we wanted to generate

multiple indicators for this construct, we randomly assigned items to
one of three indicator variables (i.e., three subscales with four items per
scale). The measurement model described above is given in Figure 7.2.
Integrating the structural and measurement models results in the full
latent variable path analysis model given in Figure 7.3.

Willingness to
Participate in

Health and
Safety
Climate

Figure 7.3.




easurement model, (b) an ill-fitting structural model, or (c) both (An-
erson & Gerbing, 1988). Accordingly, Anderson and Gerbing recom-
end a strategy of two-stage modeling in which one first assesses the fit
f the measurement model and then moves to a consideration of the

Health and
Safety
Climate

Willingness to
Participate In
Health and Safety

Perceived
Risk

The strategy is based on the observation that the latent variable
tructural model incorporates the measurement model. In fact, at least
ith respect to the relationships among the latent variables, one can
hink of the measurement model as a saturated or just-identified model.
hat is, the measurement model allows a relationship (i.e., a correlation,
ee Figure 7.2) between each pair of latent variables.

Accident
History

Figure 7.4 This being the case, the fit of the measurement model provides a
aseline for the fit of the full latent variable model. The full model,
Alternative Model Specifications ncorporating both structural and measurement relationships, cannot

rovide a better fit to the data than does the measurement model.

. Incorporating Anderson and Gerbing’s (1988) suggestions with our
hree hypothesized structural models suggests a sequence of model tests
n which we first establish the fit of the measurement model and then
10ve to a consideration of the structural parameters of interest. The
emainder of this chapter, therefore, provides the assessment of the
measurement model, followed by assessment of the full model.

The central hypothesis of our model is that risk perceptions mediaf
the relationships between health and safety climate and accident history
as the predictors, and willingness to participate in health and saf
programs in the workplace, as the outcome. Consistent with the disc
sion of mediated relationships in the previous chapter, two plausi
rival model specifications are the partially mediated (which adds pa
from the two predictors to willingness to participate, see Figure 7.4) a
nonmediated (which deletes the path from risk perception to willingn
to participate, see Figure 7.5) models. :

irom Pictures to LISREL

The translation of the path diagrams proceeds just as in previous
xamples. First, we will translate the measurement model. For purposes
fillustration, we will assess the measurement mode! on the endogenous
{Y) side of the LISREL model. (Note that it should not matter whether
ne operationalizes the factor analysis on the endogenous or exogenous
ide of the model.)

Operationalizing a confirmatory factor analysis on the endogenous
ide of the LISREL model still requires that you specify a scale of
asurement for the latent variables. Recall that in Chapter 5§ we
pecified the scale of measurement by declaring PH = ST, which as-
ned the latent variables to be standardized. This option is not available
the endogenous side of the model (you cannot declare PS = ST). The
cale of measurement therefore is assigned by fixing one of the latent
iable-indicator paths to equal 1.0 for each latent variable. In effect,
his specification tells LISREL that the latent variable is on the same scale
measurement as the indicator. It should not make a great deal of
fference which indicator is chosen to represent the scale of measure-

Model Testing Strategy

There is a major complication in testing latent variable models. If t
model does not fit, the lack of fit can be attributable to (a) an ill-fitti

Percesived
Risk

Figure 7.5.
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TABLE 7.1 Lambda Y (Factor Loadings for Y)

Latent Variable Path Analysis 109

'ABLE 7.3 TE (Unique Factors for the Endogenous Variables)

Health and Accident  Perceived Willingness ¢

itment FRee
Safety Climate History Risk  Participate ; ﬁiﬁﬁ;ﬁﬁfﬁﬂﬁﬁem FRec
1. Manager commitment 1.00 FIxed Fixed Flxed 3. Coworker commitment FRee
2. Supervisor commitment FRee Flxed Fixed Flxed 4. Own accident history FRee
3. Coworker commitment FRee Flxed Flxed FIxed 5. Witnessed accidents FRee
4. Own accident history Flxed 1.00 FIxed Flxed 6. Risk for self FRee
5. Witnessed accidents Flxed FRee Flxed Flxed 7. Risk for others FRee
6. Risk for self Flxed Flxed 1.00 Flxed 8. Participate 1 FRee
7. Risk for others Flxed Flxed FRee Flxed 9. Participate 2 FRee
8. Participate 1 Flxed Flxed Flxed 1.00 10, Participate 3 FRee
9. Participate 2 Flxed Fixed Flxed FRee T
10, Participate 3 Flxed Flxed Flxed FRee

ment for the latent variable (assuming that the indicators are all meas
ured along a similar scale).

The forms of the three matrices (LY, PS, and TE) are presented beloy
Because there are four latent variables with ten indicators, LY will hav
four columns and ten rows. PS will be a 4 x 4 symmetric matrix, N
that PS has all elements freed; that is, we are going to estimate both
variances for the latent variables and the covariances among the lat
variables. Because we will again assume that there are no correla
errors of measurement among the indicator variables, TE is declared Q
be diagonal and free; that is, TE is a vector with ten elements (one fo
cach observed variable).

Identification and Estimation

The model meets Bollen’s (1989) criteria for identification. That is, ea
latent variable has at least two indicators, and the latent variables

TABLE 7.2 PSI (Covariances for E)

Health and Accident  Perceived Willingness t
Safety Climate History Risk Participate
1. Health and safety climate FRee
2. Accident history FRee FRee
3. Perceived risk FRee FRee FRee
4, Willingness to participate FRee FRee FRee FRee

allowed to correlate freely with one another. Moreover, like all confir-
matory factor analysis models, the model is recursive. (The causal flow
is always from the latent variables to the observed indicators.)

The source code used to estimate the model is given below.

TI MEASUREMENT MODEL
DA NI = 13 NO = 115 MA = CM

Note: There are 10 indicators and 115 observations, and I want to

analyze the covariance matrix.

ME
10.7 8.9 10.9 18.6 3.8 5.5 5.7 5.5 1.7 0.9

Note: These are the item means.

SD
2,73.1297.31.51.41.21.21.7 0.8

Note: These are the item standard deviations.

KM SY
1.00
.76 1.00
.78 .68 1.00
-05 .01 -.05 1.00
.10 .09 .08 .52 1.00
0 .08 .14 -.28 -.22 1.00
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20 .18 .29 -.44 -29 .54 1.00

22 .28 .29 .42 -31 .57 .65 1.00

00 .00 -05 .42 22 -13 -26 -.20 1.00
12,03 .11 .26 30 -2 .20 =17 47

Edited Output i

NUMBER OF INPUT VARIABLES 10
NUMBER OF Y - VARIABLES 10 !

1.00 NUMBER OF X -~ VARIABLES 0
NUMBER OF ETA - VARIABLES 4 L
Note: This is the lower half of the correlation matrix. NUMBER OF KSI - VARIABLES 0
NUMBER OF OBSERVATIONS 115 :
LA 1 p2 p3 risk isk . COVARIANCE MATRIX TO BE ANALYZED :
pl p2 p3 risks riskc mgr super cow own witness ol o2 03 risks riske  plant
Note: These are variable labels for the indicator variables. pl 7.30
p2 6.27 9.27
MO NY = 10 NE = 4 PS = SY,FR p3 6.05 5.93 8.21
_ risks -1.03 0.20 -1.11° 53.60
Note: The model declares 10 indicators and 4 latent variables. riske 0.40 0.43 0.34 5.68 2.23
_declaring NY and NE, LISREL selects a confirmatory factor analysis o plant 0.04 0.35 0.59  -2.99  -0.47  2.08
the endogenous side of the model involving matrices LY, PS, and TE super 0.67 0.67 1.3 -3.97  -0.54 0.9
cow 0.70 0.90 0.98 -3.61 -0.54 0.96
LE dir -0.02 -0.01 -0.24 5.21 0.55 -0.31
part risk ¢limate accid vic 0.26 0.08 0.25 1.53 0.36 -0.14
. COVARIANCE MATRIX TO BE ANALYZED
Note: These are labels for the latent variables. super cow dir vic
VA 1.0 LY(1,1) LY(4,2) LY(6,3) LY(9,4) super 1.55
. . \ . . cow 0.95 1.39
Note: This statement inserts the value 1.0 in the designated locatio dir -0.55 -0.39 2.82
thereby declaring a scale for the latent variables. Recall that matrix vie -0.20 -0.17 0.64 0.66

has all elements Flxed by default, so no further specification is necessa

PARAMETER SPECIFICATIONS
FR LY(2,1) LY(3,1) LY(5,2) LY(7,3) LY(8,3) LY(10,4)

LAMBDA-Y

part risk climate accid

Note: Frees the remaining parameters specified in the measureme — — - -
model. pl 0 0 0 0
p2 1 0 0 0
0U ML SC TV MI p3 2 0 0 0
risks 0 0 0 0
Note: Asks for maximum likelihood estimation. I want to see riskc 0 3 0 0
completely standardized solution, the ¢ values, and the modifica plant 0 0 0 0
indices. super 0 0 4 0
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cow 0 0 5 0
dir 0 0 0 0
vic 0 0 0 6
PSI
part risk climate accid
part 7
risk 8 9
climate 10 11 12
accid 13 14 15 16
THETA-EPS
pl p2 p3 risks riskc  plant
17 18 19 20 21 22
THETA-EPS
super cow dir vic
23 24 25 26
Number of Iterations = @
LISREL ESTIMATES (MAXIMUM LIKELIHOOD)
LAMBDA-Y
part risk climate accid
pl 1.00 - - - - - -
p2 1.00 - - - - - -
(0.09)
11.18
p3 0.97 - - - - - -
’ {0.08)
11.68
risks - - 1.00 -- - -
riskc - - 0.15 - - - -
(0.03)
4.93
plant - - - - 1.00 - -
super - - - - 1.05 - -
(0.16)
6.68
cow - - - - 1.03 - -
{0.15)

6.75

Latent Variable Path Analysis

dir - - - - - - 1.00
vic - - - - - - 0.37
(0.10)
3.62
COVARIANCE MATRIX OF ETA
part risk climate accid
part 6.22
risk -0.14 38.39
climate 0.68 -3.51 0.90
accid 0.10 4,84 -0.43 1.73
pSI
part risk climate accid
part 6.22
(1.01)
6.14
risk -0.14 38.39
(1.74) (9.44)
-0.08 4.07
climate 0.68 -3.51 0.90
(0.27) (0.88) (0.25)
2.46 ~4,00 3.63
accid 0.10 4.84 -0.43 1.73
(0.39) (1.22) (0.17) (0.56)
0.26 3.97 -2.53 3.09
THETA-EPS
pl p2 p3 risks riskc plant
1.07 3.04 2.34 15.20 1.39 1.19
(0.36) (0.53) (0.44) (6.84) (0.23) (0.19)
2,95 5.78 5.27 2.22 5.95 6.41
THETA-EPS
super cow dir vic
0.55 0.44 1.09 0.43
{0.12) (0.11) (0.46) (0.08)
4.63 4,10 2.33 5.13

113
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RELATIVE FIT INDEX (RFI) = 0.90
CRITICAL N (CN) = 184.00

MODIFICATION INDICES AND EXPECTED CHANGE MODIFICATION
INDICES FOR LAMBDA-Y |

SQUARED MULTIPLE CORRELATIONS FOR Y - VARIABLES
pl p2 p3 risks riske plant

0.85 0.67 0.72 0.72 0.38 0.43

SQUARED MULTIPLE CORRELATIONS FOR Y - VARIABLES part risk  climate  accid
super cow dir vic
_ pl -- 0.02 2.74 0.28
0.64 0.68 0.61 0.36 p2 - - 0.39 0.00 0.00
| GOODNESS OF FIT, STATISTICS P -- 0% 3.5 0.38
CHI-SQUARE WITH 29 DEGREES OF FREEDOM = 30.89 (P = 0.37) risks 2.51 -- 01l 0.22
ESTIMATED NON-CENTRALITY PARAMETER (NCP) = 1.89 riskc 2.51 - - 0.12 0.22
90 PERCENT CONFIDENCE INTERVAL FOR NCP = (0.0 ; 19.50) plant 3.42 0.64 - - 0.60
MINIMUM FIT FUNCTION VALUE = 0.27 super 0.15 0.79 - - 1.47
POPULATION DISCREPANCY FUNCTION VALUE (FO) = 0.017 cow 1.0 0.05 -- 0.36
90 PERCENT CONFIDENCE INTERVAL FOR FO = (0.0 ; 0.17) dir 1.75 1.84  0.01 - -
ROOT MEAN SQUARE ERROR OF APPROXIMATION (RMSEA) =  0.024 vic 1.75 1.84 0.01 - -
90 PERCENT CONFIDENCE INTERVAL FOR RMSEA = (0.0°; 0.077)
P-VALUE FOR TEST OF CLOSE FIT (RMSEA < 0.05) = 0.73 EXPECTED CHANGE FOR LAMBDA-Y .
EXPECTED CROSS-VALIDATION INDEX (ECVI) = 0.73 part  risk  climate  accid
90 PERCENT CONFIDENCE INTERVAL FOR ECVI = (0.71 ; 0.88) :
ECVI FOR SATURATED MODEL = 0.96 p; oo g'g: 'g‘gg g‘g;
ECVI FOR INDEPENDENCE MODEL = 4.41 P o : ) :
CHI-SQUARE FOR INDEPENDENCE MODEL WITH 45 p3 -- o -0 0.38  -0.09
DEGREES OF FREEDOM = 482.66 risks -0.55 -- 0.6 0.63
INDEPENDENCE AIC = 502.66 riske 0.08 - - 0.09  -0.09
MODEL AIC = 82.89 plant -0.09 0.02 -- 0.09
SATURATED AIC = 110.00 super 0.02  -0.02 --  -0.11
INDEPENDENCE CAIC = 540,11 cow 0.04 0.01 - - 0.05
MODEL CAIC = 180.26 dir -0.11 0.72 0.02 - -
| SATURATED CAIC = 315.97 vic 0.06  -0.27  -0.01 .
| ROOT MEAN SQUARE RESIDUAL (RMR) = 0.27
STANDARDIZED RMR =  0.050 STANDARDIZED EXPECTED CHANGE FOR LAMBDA-Y
GOODNESS OF FIT INDEX (GFI) = 0.95 part risk climate  accid
ADJUSTED GOODNESS OF FIT INDEX (AGFI) = 0.90
PARSIMONY GOODNESS OF FIT INDEX (PGFI) = 0.50 pl - - 0.02 -0.28 0.09
NORMED FIT INDEX (NFI) = 0.94 p2 - - 0.13 0.00 0.00
NON-NORMED FIT INDEX (NNFI) = 0.99 p3 - - -0.14 0.36 -0.12
PARSIMONY NORMED FIT INDEX (PNFI) = 0.60 risks -1.38 - - -0.59 0.83
COMPARATIVE FIT INDEX (CFI) = 1.00 riske 0.20 -- 0.09  -0.12

INCREMENTAL FIT INDEX (IFI) = 1,00 plant -0.23 0.14 - - 0.11
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super 0.04 -0.14 - -0.15 EXPECTED CHANGE FOR THETA-EPS
cow 0.10 0.03 - 0.07 pl p2 p3 risks riskc  plant
dir -0.27 4.46 0.02 --
vic 0.10  -1.66  -0.01 -- l - -
. p2 2.80 --
COMPLETELY STANDARDIZED EXPECTED CHANGE FOR LAMBDA-Y 3 071 254 - -
part  risk  climate accid risks -l46 113 0.3 --
riskc 0.09 0.00 0.10 -- - -
pl - - 0.01 -0.10 0.03 plant -0.37 0.09 0.18 0.63 -0.02 --
| 02 . 0.04 0.00 0.00 super 0.00 -0.16  0.17  -0.27 0.02  0.08
| 03 . -0.05 0.13 0.0 cow -0.05 017  0.01 0.02  -0.05  0.17
dir -0.02 011 -0.24  2.66 -0.33  0.10
H_Sks -0.19 oo -0.08 0.11 vic 0.09  -0.17 0.13 -1.10 0.7 -0.01
riske 0.14 - - 0.06 -0.08
plant -0.16 0.10 - - 0.08 EXPECTED CHANGE FOR THETA-EPS
super 0.03 -0.11 -- -0.12 super cow dir vic
cow 0.08 0.03 - - 0.06
dir -0.16 2.66 0.01 - Super .
cow -0.35 - -
vic 0.12 -2.03 -0.01 - - dir -0.09 0.09 - -
vic -0.01 ~0.02 - - - -
NO NON-ZERO MODIFICATION INDICES FOR PSI
MODIFICATION INDICES FOR THETA-EPS COMPLETELY STANDARDIZED EXPECTED CHANGE FOR THETA-EPS
pl p2 p3 risks riske pl p2 p3 risks riskc plant
pt -- o1 - -
p2 4.07 -- p2 0.34 --
p3 0.2 4.67 -- p3 0.09  -0.29 -
risks 332 L4 0.1 -- risks 0.070.05  0.02 o
riske 0.8  0.00  0.25 -- -- riske 0.02 000 0.2 - - -
plant 5.22 0.7 0.8 099  0.02 plant 0.9 o002z 004 006 -0.01 @ --
super 0.01 0.97 1.42 0.28 0.05 super 0.00 -0.04 0.05 -0.03 0.01 0.03
cow 0.18 1.38 0.00 0.00 0.25 cow -0.02 0.05 0.00 0.00 =-0.03 0.10
dir 0.01 0.20 LO8 547 4.28 dir 0.00 0.02 -0.05 0.22 -0.16  0.04
vie 0.88 L.81 L2a 498  3.78 vic 0.04  -0.07 0.06 -0.18  0.14 -0.01

COMPLETELY STANDARDIZED EXPECTED CHANGE FOR THETA-EPS
MODIFICATION INDICES FOR THETA-EPS

super cow dir vie super cow dir vic
super - - Super T
cow 4.18 - - cow -0.24 - -
dir 0.59 0.57 - - dir -0.04 0.04 - -
vic 0.06 0.10 - - - - vic -0.01 -0.02 - - - -
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MAXIMUM MODIFICATION INDEX IS 5.47 FOR ELEMENT (9, 4) oF riskc - - 0.61 - - - -
THETA-EPS ‘ plant - - - - 0.66 - -
STANDARDIZED SOLUTION super - - - - 0.80 - -
i dir R
part risk climate accid vic . . . 0.60
pl 2.49 -- -- - - j
2 2.50 CORRELATION MATRIX OF ETA Li
P : T T T - part risk  climate accid 0
p3 2.42 - - - - - - ;‘_
risks - - 6.20 - = - - part 1.00
riskc -- 0.92 - - - - risk -0.01 1.00 :
plant - - -- 0.95 - - climate 0.29  -0.60 1.00
super - - - - 1.00 - - accid 0.03 0.59  -0.35 1.00 ;i
cow - - - - 0.98 - -
dir - - - - - - 1.32 PSI ‘
vic - - - - - - 0.49 part risk climate accid
CORRELATION MATRIX OF ETA part 1.00
part risk  climate accid risk -0.01 1.00
risk -0.01 1.00 accl : . - '
chaFe 0.29 -0.60 1.00 THETA-EPS
accid 0.03 0.59 -0.35 1.00 pl p2 p3 risks riskc plant
PSI 0.15 033 028 0.8 0.6 0.5
¢ ; .
par risk climate accid THETA-EPS
part 1.00 super cow dir lvic
risk -0.01 1,00 0.3  0.32  0.39  0.64
climate 0.29 -0.60 1.00
accid 0.03 0.59 -0.35 1.00
COMPLETELY STANDARDIZED SOLUTION Assessment and Modification
LAMBDA-Y
part risk climate accid o . .
I — —_ —_ As specified, the measurement model provides an acceptable fit to the
pl 0.92 - - - - - - - data [x2(29) = 30.89, ns; GFI = .95; AGFI = .90; RMSEA = .02;
p2 0.82 - - - - - - NFI = .94; CFI = 1.00; PNFI = .60; PGFI = .50], and all estimated
] p3 0.85 - - - - - - arameters are significant. We can proceed, thereforg, with the assess-
risks - - 0.85 - - - - ment of the structural model.
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— |
From Pictures to LISREL TABLE 7.7 LY (Factor Loadings for Endogenous Variables) !
Although the measurement model was estimated entirely on the | Risk Willingness to Participate
endogenous side of the LISREL model, the full latent variable model . 1. Risk for self 1.00 Flxed
requires the use of both the exogenous and endogenous sides of the 2. Risk for Coworkers FRee Flxed
, model. We begin by setting up the measurement of the exogenous an 3. Participation 1 Flxed 1.00
i endogenous variables (thereby using both methods of setting a scale of - 4. Participation 2 Fixed FRee
measurement for the latent variables) and then proceed to set up th 5. Participation 3 Flxed FRee |

structural model. The setups are shown in Tables 7.4-7.11.

Note that the correlation between risk and willingness to participat
is fixed in the PS matrix (PS 2, 1). Recall that PS appears in both th
measurement model for the endogenous variables and the structural

TABLE 7.8 TE (Unique Factors for Endogenous Variables) !

model. Because we are estimating a path between risk and willingnes 1. Risk for self FRee )
to participate [BE (2, 1], we cannot simultaneously estimate the corre § ll}'i: for fiow"lrkers giee
lation between the two factors. Thus, PS takes the form appropriate fo " P:uiz;i:ﬁz: 2 FR::
the structural model. 5. Participation 3 FRee

TABLE 7.4 LX (Factor Loading for Exogenous Variables)

TABLE 7.9 GA (Relates Exogenous to Endogenous Variables)

Health and
Safety Climate Accident History Health and
1. Manager’s commitment FRee Flxed Safety Climate Accident History
2. Supervisor’s commitment FRee Flxed 1. Risk FRee FRee
3. Coworker’s commitment FRee Flxed 2. Willingness to participate Fixed Flxed
4. Own accident history Flxed FRee
5. Witnessed accidents Flxed FRee

. . TABLE 7.10 BE (Relates Endogenous to Endogenous Variables)
Table 7.5 PH (Factor Covariances for Exogenous Variables)

Risk Willingness to Participate
Health and g P
Safety Climate Accident History 1. Risk Flxed Flxed
1. Health and safety climate 1.00 2. Willingness to participate FRee FIxed
2. Accident history FRee 1,00

TABLE 7.11 PS (Factor Covariances for Endogenous Variables)
TABLE 7.6 TD (Unique Factors for Exogenous Variables)

Risk Willingness to Participate
. " itment FR«
1 Managfar s’comml l.nen ec 1. Risk FRee
2. Supervisor’s commitment FRee 2. Willi .. Flxed FRe
3. Coworker’s commitment FRee - ViTingness to participate xe ©
4, Own accident history FRee

5. Witnessed accidents FRee
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Identification and Estimation II —_—
: Edited Output

The measurement relationships incorporated in the model have not
changed from the previous analysis; therefore, the measurement com-
ponent of the model is identified. Because the structural model involves
only recursive relationships, the structural component also is identified

NUMBER OF INPUT VARIABLES 10
NUMBER OF Y - VARIABLES 5
NUMBER OF X - VARIABLES 5
NUMBER OF ETA - VARIABLES 2

(Bollen, 1989). NUMBER OF KSI - VARIABLES 2
The source code used to estimate the model is given below. NUMBER OF OBSERVATIONS 115
BA NI = 10 O = 115 WA = O PARAMETER SPECIFICATIONS
ME LAMBDA-Y
10.7 8.9 10.9 18.6 3.8 5.5 5.7 5.5 1.7 0.9 part risk
SD - -
2.73.129731.51.41.21.21.7 0.8 pl 0 0
p2 1 0
1.00 risks 0 0
® e Lo riske 0o 3
-05 .01 -.05 1.0 LAMBDA-X
0 .09 .08 .52 1.00 climate  accid
0 .08 .14 -28 -.22 1,00 — —_—
20 .18 .29 -4 29 .54 1.00 plant 4 0
22 .25 .29 -.42 -31 .57 .65 1.00 super 5 0
00 .00 -.05 .42 .2 -13 -.26 -.20 1.00 cow 6 0
Jd2 .03 1 .26 30 -12 20 -.17 .47 1.00 dir 0 7
LA vic 0 8
pl p2 p3 risks riskc plant super cow dir vic
MONY = 5 NE=2NK=2NKX =5 PS = DI,FR PH = ST GA = FU,FT BE = FU,FI BETA
part risk
LE -_— —
part risk part 0 9
risk 0 0
LK
climate accid GAMMA
FR GA(2,1) GA(2,2) BE(1,2) climate accid
VA 1.0 LY(1,1) LY(4,2) —_— —_—
FR LY(2,1) LY(3,1) LY(5,2) part 0 0
FR LX(1,1) LX(2,1) LX(3,1) LX(4,2) LX(5.2) risk 10 11

OU ML SC TV MI
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PHI cow 0.97 - -
climate accid (0.10)
_ — 9.45
climate 0 dir - - 1.37
accid 12 0 ' (0.22)
6.15
PSI vic - 0.47
part risk (0.09)
—_— —_— 5.00
13 14
. BETA
THETA-EPS part risk
pl p2 p3 risks riskc
e svrem—— part - - "0.02
15 16 17 18 19 : (0.04)
-0.51
THETA-DELTA isk - - - -
piant super cow dir vic s
GAMMA
20 21 22 23 24 climate accid
LISREL ESTIMATES (MAXIMUM LIKELIHOOD) part - - -
LAMBDA-Y art " risk -2.86 2.69
p (0.72) (0.78)
I I -3.99 3.44
pl 1.00 - -
p2 0.98 . COVARIANCE MATRIX OF ETA AND KSI
(0.09) part risk climate accid
11.06 -
p3 0.95 - - part 6.39
(0.08) risk -0.89 41.09
11.48 climate 0.08  -3.77 - 1.00
risks - - 1.00 accid -0.08 3.65 -0.34 1.00
riskc - - 0.14
(0.03) PHI
4.67 climate accid
LAMBDA-X climate 1.00
climate accid accid -0.34 1.00
i— I 0.12
plant 0.97 - - 52.91)
{0.13)
7.43 Psl
super 0.99 - - part risk
(0.11) — —_—
9.19

6.37 20.48
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(1.02) (8.04)

6.25 2.55
SQUARED MULTIPLE CORRELATIONS FOR STRUCTURAL EQUATIONS
part risk
0.00 0.50
THETA-EPS
pl p2 p3 risks riske
0.90 3.13 2.48 12.51 1.45
(0.38) (0.54) (0.46) (7.52) (0.24)
2.41 5.83 5.41 1.66 6.11

SQUARED MULTIPLE CORRELATIONS FOR Y - VARIABLES
pl p2 p3 risks riske

0.88 0.66 0.70 0.77 -0.35

THETA-DELTA
plant super cow dir vic

1.15 0.56 0.46 0.93 0.45
(0.18) (0.12) (0.11) (0.52) (0.08)
6.25 4,51 4.14 1.80 5.37

SQUARED MULTIPLE CORRELATIONS FOR X - VARIABLES
plant super cow dir vic

0.45 0.64 0.67 0.67 0.33

GOODNESS OF FIT STATISTICS

CHI-SQUARE WITH 31 DEGREES OF FREEDOM = 39.60 (P = 0.14)

ESTIMATED NON-CENTRALITY PARAMETER (NCP) = 8.60
90 PERCENT CONFIDENCE INTERVAL FOR NCP = (0.0 ; 28.92)
MINIMUM FIT FUNCTION VALUE = 0.35
POPULATION DISCREPANCY FUNCTION VALUE (F0) = 0.075
90 PERCENT CONFIDENCE INTERVAL FOR FO = (0.0 ; 0.25)
ROOT MEAN SQUARE ERROR OF APPROXIMATION (RMSEA) = 0,049
90 PERCENT CONFIDENCE INTERVAL FOR RMSEA = (0.0 ; 0.090)
P-VALUE FOR TEST OF CLOSE FIT (RMSEA < 0.05) = 0.48
EXPECTED CROSS-VALIDATION INDEX (ECVI) = 0.77
90 PERCENT CONFIDENCE INTERVAL FOR ECVI = (0.69 ; 0.95)

Latent Variable Path Analysis

ECVI FOR SATURATED MODEL = 0.96
ECVI FOR INDEPENDENCE MODEL = 4.41

CHI-SQUARE FOR INDEPENDENCE MODEL WITH 45
DEGREES OF FREEDOM = 482.66

INDEPENDENCE AIC = 502.66

MODEL AIC = 87.60

SATURATED AIC = 110.00

INDEPENDENCE CAIC = 540.11

MODEL CAIC = 177.48

SATURATED CAIC = 315.97

ROOT MEAN SQUARE RESIDUAL (RMR) 0.35
STANDARDIZED RMR =  0.087

: GOODNESS OF FIT INDEX (GFI) = 0.94
ADJUSTED GOODNESS OF FIT INDEX (AGFI) = 0.89
PARSIMONY GOODNESS OF FIT INDEX (PGFI) = 0.53
NORMED FIT INDEX (NFI) = 0.92

NON-NORMED FIT INDEX (NNFI) = 0.97

PARSIMONY NORMED FIT INDEX (PNFI) = 0.63
COMPARATIVE FIT INDEX (CFI) = 0.98
INCREMENTAL FIT INDEX (IFI) = 0.98

RELATIVE FIT INDEX (RFI) = 0.88

CRITICAL N (CN) = 151.25

MODIFICATION INDICES AND EXPECTED CHANGE
MODIFICATION INDICES FOR LAMBDA-Y

part risk

pl -- 0.00
p2 - - 0.45
p3 - - 0.42
risks 0.01 - -
riske 3.50 - -

MODIFICATION INDICES FOR LAMBDA-X
climate accid

plant - - 0.95
super - - 1.62
cow - - 0.23
dir 0.23 - -

vic 0.23 - -

127
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MODIFICATION INDICES FOR BETA p2 0.81 - -
part risk p3 0.84 - -
part - - - - risks - - 0.88
- - 0.59
risk 3.8 - - riske
LAMBDA-X
MODIFICATION INDICES FOR GAMMA climate accid
climate accid
part 7.84 0.30 plant 0.67 -
risk - - - - super gg(z) - -
cow . - -
NO NONZERO MODIFICATION INDICES FOR PHI dir - - 0.82
MODIFICATION INDICES FOR PSI vic - - 0.57
part risk
—— _ BETA
part - - , part risk
risk 3.28 - -
' part - - -0.06
MODIFICATION INDICES FOR THETA-EPS risk - - -
Toopl p2 p3 risks  riskc °
GAMMA
P; 0‘4; climate  accid
p . - - - -
p3 0.45 0.00 - - part - - -
risks 2.05 1.70 0.39 - - .
riske 0.44  0.00  0.21  3.28 - - risk -0.45  0.42
MODIFICATION INDICES FOR THETA-DELTA-EPS CORRELATION MATRIX tOF ETArAi"S‘:( KSl Climte  accid
pl p2 - p3 risks riskc par
plant 3.92 0.39 1.13 0.72 0.03 part 1.00
super 0.17 0.68 1.49 0.21 0.09 risk ~0.06 1.00
cow 0.00 1.73 0.06 0.00 0.14 climate 0.03 -0.59 1.00
dir 0.02 0.22 0.88 3.66 3.66 accid -0.03 0.57  -0.3 1.00
vic 0.92 1.69 1.07 3.87 4,58
MAXIMUM MODIFICATION INDEX IS 7.84 FOR ELEMENT (1, 1) OF GAMMA
COMPLETELY STANDARDIZED SOLUTION pPSI
LAMBDA-Y part risk
part sk 100 0.50

pl 0.94 - -
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THETA-EPS

pl p2 p3 risks riskc
0.12 0.34 0.30 0.23 0.65
THETA-DELTA
plant super cow dir vic
0.55 0.36 0.33 0.33 0.67
REGRESSION MATRIX ETA ON KSI (STANDARDIZED)

climate accid

part 0.02 -0.02
risk -0.45 0.42

Assessment and Modification II

This is an interesting case in that although the model provides a
acceptable fit to the data [x*(31) = 39.60, ns; GFI = .94; AGFI = .89
RMSEA = .05; NFI = .92; CFI = .98; PNFI = .63; PGFI = .53], not
all the paths in the model are significant. Risk perceptions do not
significantly predict willingness to participate (B = —.06, ns).

The partially mediated model (resulting from adding paths from bot

exogenous variables to w1lhngncss to participate) provided a sxgmf
cantly better fit to the data [)(’difference(2) = 8.72, p < .02; x*(29)
30.89, ns; GFI = .95; AGFI = .90; RMSEA = ,02; NFI = .94; CFI
1.00; PNFI = .60; PGFI = .50). The nonmediated model (which delete
the path from risk perceptions to willingness) also provided a good fi
to the data [*(30) = 32.07, ns; GFI = .95; AGFI = .90; RMSEA
.03; NFI = .93; CFI = 1.00; PNFI = .62; PGFI = .52] but did not diffe
from the parnally medlated model, X diterence(1) = 1.17, ns. Given tha
the partially mediated model and nonmediated model provide equiva
lent fits to the data, the nonmediated model is accepted based on th
consideration of parsimony.

Post hoc inspection of the model parameters suggested that th
nonsignificant path from accident history to willingness to participat
could be deleted from the model. Domg so did not change the fit of th
model [ ditterence(1) = 1.70, ns; x*(31) = 33.77, ns; GFI = .95: AGF
.90; RMSEA = .03; NFI = .93; CFI = .99; PNFI = .64; PGFI = .53
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Health and
Safety
Climate

illingness to
Participate in
Health and Safety
rograms

Perceived
Risk

Accident
History

Figure 7.6,

but it did result in a more parsimonious model. The revised nonmediated
model is presented in Figure 7.6.

Sample Results Section

A sample results section reflecting these findings is presented below.

Results

Descriptive statistics and intercorrelations for all study variables are
presented in Table 7.12. All model tests were based on the covariance
matrix and used maximum likelihood estimation as implemented in
LISREL VIII (J6reskog & Sérbom, 1992).

The measurement model provided an acceptable fit to the data
*(29) = 30.89, ns; GFI = .95; AGFI = .90; RMSEA = .02; NFI =

.94; CFI = 1.00; PNFI = .60; PGFI = .50]. Standardized parameter
estimates for the measurement modcl are presented in Table 7.13.

Table 7.14 presents the fit indices for the three structural models of
interest. As shown, the partially mediated model provided a better fit to
the data than did the fully mediated model [ ditterence(2) = 8.72, p <
.02). The nonmediated model and partially mediated model did not
differ [)’difference(1) = 1.17, ns]. Based on the consideration of parsimo-
nious fit, the nonmediated model was retained for further analysis.
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. a3 TABLE 7.13 Standardized Parameter Estimates for the Measurement
=
Model
Willingness Health and  Accident
NN to Participate  Risk Safety Climate History R?
o I; -t o=t
1. Participation 1 0.92 0.85
2. Participation 2 - 0.82 0.67 |
" N 3. Participation 3 0.85 - 0.72 |
o § &~ 4. Risk to self 0.85 0.72
5. Risk to others 0.61 0.38 i
6. Manager’s
~ N~ commitment 0.66 0.43
8 3{ 3' o 7. Supervisor’s
commitment 0.80 0.64
@ 8. Coworkers’
- © " < commitment 0.83 0.68
I s 5 al v? n - 9. Accident history 0.78 0.61
% 10. Witnessed accidents 0.60 0.36
3
2 ©
] w ; . .
E :ﬁ g"\ S' N ]~ TABLE 7.14 Fit Indices for the Three Models
’g xz df GFI AGFI RMSEA NFI CFI PNFI PGFI
il S 8 o2 3 o9 e N 1. Partially mediated 309 29 95 .90 .02 .94 100 .60 .50
2 ey §y oa- 2. Fullymediated 396 31 94 89 .05 92 98 .63 .53
8 3. Nonmediated 321 30 95 90 .03 93 1.0 62 S2
~t
g o o
g 28 % & Ay =g-
= 1 ]
e 34**
E )
o
-Lu) N Health and
V] €83 8 = {8 g«*e Satety
8 Climate
% illingness t
N~ Perceived ngness to
T 5 Participate in
‘(g’ “l B8R ‘<'>|‘ S 8 & §48 49z Risk Health and Safety
g rograms
] . 45%*
8 lzvolg 5.5 88 e
5558 Bri EE .
| 88 gEnE 8 8E 48
- BSfcooBEPEHEEE I 18 ns
~ COGGe8PERLESES 8] .
mleEEEy ¥ 888383 FEY ,
a 3 SE8R2d A O <B g Figure 7.7,
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Standardized parameter estimates for the structural model are pre
sented in Figure 7.7. As shown, both risk perceptions (B = -.43, p <
.01) and willingness to participate in health and safety program
(B =.34, p < .01) were predicted by perceived health and safety climate
Risk perceptions (§ = .45; p < .01) but not willingness to participat
(B = .18, ns) were predicted by respondents’ accident history.

Deleting the nonsignificant path from the model did not result in
significant change to model fit, [\ diterence(1) = 1.70, ns].

8  Concluding
Comments

CHAPTER

In previous chapters, we considered the logic and mechanics of structural
equation modeling with specific reference to the three most common
versions of structural equation models: confirmatory factor analysis,
observed variable path analysis, and latent variable path analysis. In this
final chapter, I introduce two useful extensions to the procedures
discussed thus far.

Single Indicator Latent Variables

As a general rule, one should strive for at least two or three indicators
(observed variables) for every latent variable. Following this guideline
generally will steer you clear of the shoals of underidentified models. In
some cases, this rule must be violated because of either lack of available
data or lack of forethought.

Unfortunately, we are sometimes stuck with only one indicator for a
construct. Two solutions to this dilemma are possible. First, one can divide
the scale items to form multiple indicators, as was done in the previous
chapter. The second solution is to declare a latent variable with only one
indicator. This is bound to leave us with an identification problem
(trying to estimate both a unique and a common factor loading as well
as the variance for one construct using only one indicator). The solution
is to FIx the common (LY) and unique (TE) factor loadings at predeter-
mined values and to estimate only the variance of the latent variable.
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