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Regression assumptions
• For an OLS regression equation to be a good model of the data, we 

have to fulfill assumptions with respect to:
– Complete specification of X
– Perfect measurement of X
– Linearity / additivity
– Collinearity
– Residuals

• Regression diagnostics allow us look at the degree to which the 
assumption are met.

• Note that high explained variance is NOT an assumption!
• Also note that violations of assumptions is not always (very) harmful, 

in particular (A) because they only have consequences for the SE, 
rather than for the B’s, (B) much sensitivity to assumptions arises only 
in low N studies.
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Specification

• All the predictors of X and Y have to be included in the 
model. Violation of this rule is often referred to as 
“unobserved heterogeneity” or “omitted variables bias”.
– IMPORTANT: when you leave out predictors of Y that are NOT 

correlated with the other X-variables in the model, there is very 
little harm and the harm is only to the SE.

• No irrelevant X-variables are included in the model.
– In fact, there is usually little harm here. It leads to some 

inefficiency. You can see (SE’s) how much.
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Specification error - repairs

• Specification error cannot be repaired in the 
analysis, it is a matter of research design:
– Measure all the relevant confounders
– Randomize all the confounders (=experiments)
– Control all the time-constant confounders by 

repeated measurement (panel design):
• Lagged variable (first difference) analysis
• Fixed effect analysis
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Stepwise modeling
• In practice, analysts look quite a bit at badly specified models: in 

stepwise modeling, we compare models with different specifications 
(=subsets of X-variables).

• Forward and backward (or even automatic) – not advised.
• If theoretically guided (causal order assumption), this can all be very 

instructive.
• In publications we often find ‘blockwise’ modeling. It is important to 

respect causal logic, but it can be done in two ways:
– First exogenous, than intervening variables
– First intervening, then confounding variables.

• This depends on how you want to tell the story.
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Measurement assumptions

• Interval measurement of X and Y
– Includes dichotomous measurement of X and dummy 

variables for nominal X.
– Whether you can apply the model to ordinal measures 

is a matter of interpretation.

• NO measurement error should occur in the X-
variables

• Measurement error in Y has consequences, but 
these are not as severe as in X. 
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Measurement error in X / Y
• Measurement error:

– Random (unreliability)
– Systematic (invalidity – you are measuring another variable than you 

intend to).
• Random measurement error in Y is subsumed in the residuals: it 

lowers R2 and beta’s (and increases SE), but B’s stay the same.
• Random measurement error biases (weakens) effects of the X-variable 

(downward bias); how this works out in multiple regression is 
predictable, can be repaired  (if you know the size of the random 
error), but is still complicated.

• No general statement about the effects of systematic error (and proxy 
variables) can be made. However, you can often say much about in a 
specific context.
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Measurement error
• Measurement error is an underestimated problem in social 

science analysis – and even more so in discrete variables 
analysis and qualitative studies. 

• Only calculating cronbach’s alpha is inadequate!!
• Measurement error can be solved if you know the amount 

of error. This requires  designs with repeated measurement.
• But even if you do not have repeated measurement in your 

design, you can think about and correct consequences of 
random measurement error on your results.

• I find this an extremely important issue and like linear 
models (in a SEM context) so much because they offer a 
solution here.
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Collinearity
• The X’s in MR can be uncorrelated (no collinearity), but usually – in observational 

(=non-experimental) studies – they are correlated. They are ‘collinear’.
• Multi-collinearity: the degree to which X’s depend upon one another in a case of three 

or more X’s. You cannot directly judge this from the correlation matrix.
• If the X’s are uncorrelated (experiments), Multiple Regression is a bit pointless.
• If collinearity is extreme, this implies that we cannot easily separate the individual 

influences of variables. The SE can become very high, and nothing is significant.
• However, with high collinearity we often see that the effects of X1 and X2 have 

reversed signs (and both are ‘significant’).
• Methodological texts may leave the impression that collinearity is a bad thing and needs 

to be avoided: this is a wrong impression.
• Even if collinearity is strong, it is something you will have to deal with, in stead of 

avoid.
• Perfect collinearity arises when one X is totally determined by the other X-vars (e.g. in 

the case of dummy variables or the APC problem). This is quite different from strong or 
almost perfect collinearity.
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Collinearity: what to do?
• Perfect collinearity needs no repairs, just correct interpretation.
• High collinearity can be countered by more data: this does not 

repair the collinearity itself, but makes the SE smaller in another 
way.

• You cannot ‘repair’ collinearity by leaving out one of the 
variables – this just changes the research question answered.

• Sometimes it helps to center the data (e.g. with polynomial and 
interaction terms). This trick makes the results a bit more 
“stable”, although the only thing it does is move the numbers to 
a more stable area in the regression space.

• You cannot repair collinearity by making small modifications to 
the data. This is cheating, in particular on yourself.
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No perfect multicollinearity

• Three important instances:
– Dummy representation of X-variables: you have to 

choose (omit) a reference category.
– APC or AC: effects of age, cohort and period at the 

same time: leave out one and refrase your explanation.
– You cannot have more predictors than data-points. In 

fact, it is advisable to have many more (at least 10x) 
data-points than predictors.

• All of this is a matter of research design and 
proper interpretation.
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High multi-collinearity

• High multicollinearity can be produced by the data and can 
be repaired by (more) data.

• If two X-variables are highly correlated you just need a lot 
of data to distinguish their partial effects.

• IMPORTANT: this is something that canNOT be avoided 
by simply omitting one of the collinear variables! This 
would change the research question.

• However, sometimes changing the question is a good idea: 
e.g. model the average (joint) effect of father / mothers.
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Residuals

• Residuals are the distance between the actual Y 
from the predicted Y.

• Correct estimation assumes:
– Residuals are evenly spread around the regression plane 

(homoskedasticity).
– Residuals are normally distributed.
– Residuals are not correlated (=random).

• Violation may affect the estimated SE. There is no 
harm for the estimated coefficients.
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Variance of the residuals

• VAR(res) is expected to be constant for all combinations 
of X (homo-skedasticity / hetero-skedasticity).

• Intuitively: in the formula’s for the SE’s of B a single R2 
represents all residual variation adequately. In 
heteroskedastic data this is a simplification.

• WLS en GLS take into account that the expected variance 
fluctuates by X-combinations. This makes for more 
complicated estimation procedures and more complicated 
formulas for SE’s.
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A special case: dichotomous Y
• In a dichotomous variabe, variance = p*(1-p). This number 

becomes very small when p is close to 0 or 1.
• When the Y is dichotomous, the residuals are typically 

reduced with extreme X-values. This is a form of hetero-
skedasticity.

• Adequate technique here is logistic regression.
• However, the ‘linear probability’ models often works well 

in cases that Y has an overall mean between 0.80 and 0.20.
• While the linear probability is for some (journals) a big no-

no, I would encourage any used of LR to OLS regression 
and compare the conclusions. 
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Normality of the residuals

• Distribution of the residuals is often assumed to be 
normal. You can check this by plotting the 
residuals (formal testing is a little hard).

• This assumption is only needed in small samples 
for correct estimation of SE. 

• In small samples (with appropriate sampling 
design), correct SE’s can also be estimated using 
resampling (jackknife & bootstrap).

• IMPORTANT: one important exception to 
normality is the presence of outliers.
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No autocorrelation (among 
residuals)

• No autocorrelation: you cannot predict the size of a residuals 
from another one; residuals are a truly random draw.

• Exceptions may occur in:
– Time-series data, panel-data
– Network data
– Geographical data
– Multi-level (hierarchical) data

• Fortunately, autocorrelation can be repaired in GLS-estimation 
(e.g. time series analysis). In fact, taking into account 
autocorrelation may improve model estimation considerably and 
more so if autocorrelation is higher. This is more of less the 
relevance of panel analysis.
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Outliers

• An outlier is a point with a high residual that is not 
fit by the regression model.

• The first point to understand about this is that 
regression models often do fit extreme data-point 
– so you do not see outliers.

• Outliers are relatively rare in dependent variables 
with a limited range – such as attitude scales.

• We should be particularly sensitive to outliers in 
low N studies with ratio variables (such as 
comparative studies of countries or organizations).
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Leverage
• We speak of leverage (‘hefboomwerking’), when a 

datapoint is an outlier only in the X-space, i.e. far removed 
from the other data-point.

• Typically, leverage does not lead to outliers in Y!!
• Leverage can be measured by the distance from the 

centroid. SPSS measures this distance by:
– Cook
– Manahalobi
– Leverage

• High leverage points are typical candidates for influence / 
jacknife analysis.
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Influence

• Influence denotes that a data-point 
determines the solution strongly: if we leave 
it out, the model changes dramatically.

• This may be so because a data point has 
much leverage OR because of outlie-ing
residual.

• SPSS measure influences by Cooks distance 
and by studentized deleted residualized.
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SPSS

• UniAnova offers:
– Residuals: raw, standardised, studentized, deleted
– Leverage
– Cook’s distance

• Regression offers the same plus:
– Studentized deleted
– Mahalanobi’s distance
– Influence statistics: 5x

• All of this works best in small N problems – in 
which case you can also eyeball.
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Is it a problem?
• Outliers, high leverage and influence make the model 

unstable, but do not make the model incorrect.
• Again, most of the effect is on the SE: these may be 

incorrectly estimated.
• Again: resampling techniques (bootstrap) may be the 

solution to obtain correct SE. But in small N studies, it 
may also be instructive to present models on restricted 
samples (=do your own jacknife).

• An alternative may be to re-express all variables in P-
scores, which removes most extremities. Then re-estimate 
the model and compare standardized solutions. This is a 
easy form of ‘robust estimation’.
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Resampling techniques
• Resampling techniques are becoming increasingly popular 

to estimate correct SE.
• The traditional approach is that SE are ‘analytically’

derived (via mathematical formula) assuming simple 
random sampling (and normality).

• In resampling, you generate an ‘empirical’ sampling 
distribution by repeating the SRS process a great many 
times. This also assumes SRS, although more complex 
sampling design can be accommodated.

• With increased computational power, this is now also do-
able to high N studies (but still takes a lot of computer 
time, try).
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Resampling techniques
• Bootstrap. Samples of size N (!!) are drawn from your effective sample 

with replacement (“met teruglegging”) and this is repeated very often.
• Jack-knife: leave out 1, 2, 3 .. observations.
• Both lead to a similar empirical sampling distribution, which may have 

different SE than the analytical one.
• Jack-knife is reproducible, bootstrap has a random component. 
• In SPSS, only bootstrap is available (in UNIANOVA).
• Jack-knifing with 1 observation omitted is actually easy to do and can 

be quite instructive about influence.
• IMPORTANT: Resampling techniques are NOT a repair for faulty 

sampling designs. They have the same assumptions about the sampling 
designs as analytical procedures.
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Further reading?

• Berry, William D. (1993) Understanding 
Regression Assumtions. Sage University 
Papers #92.

• Allison, Paul D. (1999), Multiple 
Regression, a Primer. Sage.


