METHODS OF QUANTITATIVE DATA ANALYIS MSR Course, 2011-2012

Harry B.G. Ganzeboom Lecture 4c: SEM models May 4 2012

SEM

- SEM can mean:
 - Structural Equation Modelling
 - Simultaneous Equation Modelling
- Brings together:
 - Multiple (multiple) regression models in a single causal (structural model)
 - Regression models for causal effect with measurement models (I.c. comon factor model).

Advantages

- SEM makes you think about how the world works: causal effects.
- SEM makes you aware of the biases that occur through (random and systematic) measurement and provides tools to diagnose and repair these.
- ML estimation of data with random missings.
- SEM's can fix coefficient to some specific values, make them equal or restrict them to a certain range (constrained estimation).

The world as a correlation matrix

- Although SEM's are not restricted to covariances and correlations, the classical models and applications are.
- In an SEM state of mind, one sees the world summarized in a correlation matrix; the research task is to invent a set of (simple) mathematical equations that will reproduce the matrix.

The elementary causal model

Direct effects

Indirect effect

Confounding effect

The path-analytic theorem

- Total correlation =
 - Direct effect + indirect effects + confounding effects.
- Indirect effects are the multiplication of the two direct effects.
- Confounding effects are the multiplication of the two direct effects.
- Notice that while the definition and calculation of confounding and indirect effects is fairly similar, their causal interpretation is radically different:
 - Indirect effects inform you how (via which mechanism) X influences Y;
 - Confounding effects inform to what extent the correlation between X and Y is NOT causal (but spurious).

Identification

- In the elementary causal model there are three correlation (known quantities) and three unknown quantities (coefficients).
- This generates a system of three algebraic equations that can simply be solved (by hand).
- The solution is identical to what we would find using (multiple) regression.
- In non-recursive models it is generally true that we have as many unknowns as equations, and with some work, can solve for the unknowns.

Measurement

The elementary measurement model

SEM models

Measurement models

- Measurement can be interpreted as a causal model in which a latent variable causes the response on an observed variable.
- → We see the reality in our observed variables with some measurement error.
- We can estimate the measurement error when we repeat the measurement and generate independent measurement error.
- If we do not have repeat measures, we cannot know the amount of measurement error, but it is still there.
- Measurement error in a model with two measures is not identified as such (but see below), but a model with three indicators is exactly identified, much in the same way as we can solve for the coefficients in the elementary causal model.

Putting it together

- The elementary causal model and the measurement model are both SEM's, but the real SEM arises when we combine them in a single model.
- Note that if we combine measurement model and causal model, it is (mostly) not necessary anymore to have three indicators for each latent variable: two is enough for identification.

A two factor model

SEM models

Identification in the two factor model

- In the two-factor model with two indicators per construct we have 5 unknowns and 6 correlation: the model is identified.
- So: by combining causal and measurement analysis, we can reduce the number of necessary indicators.
- And still identify the amount of random measurement error.

Random measurement error

- Random measurement error (or: Unreliability) arises as if by a random process: it is unpredictable when and how much deviation from the true score will arise for each individual.
- Random error makes measures unreliable (or: unstable): it leads to different answers all of the time.
- With SEM common factor model we can estimate <u>how much</u> error occurs, but not find out <u>when</u> it occurs.

A two factor model with correlated error

18

Systematic measurement error

- Some kind of measurement error arise systematically, the deviation from the true score has some consistency (within persons, between measures).
- Systematic measurement error is also known as invalidity or bias.
- We can trace systematic errors by repeating the error:
 - Random error: repeat the measurement
 - Systematic error: repeat the error.

Correlated error

- If we have two measure that have the same (systematic) error, this arises as correlation between the measures (even if the two measures do not have a true score in common).
- Systematic measurement modelling is just a variety of (multiple) common factor analysis.
- MTMM models: Multiple Traits, Multiple Methods – is a traditional name for separating random error from systematic ('method') error.

Software

- LISREL (Jöreskog & Sörbom) SEM models are often referred to as "lisrelmodels", users as "lisraelites".
- Mplus
- AMOS
- Stata12