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Agenda

• Causal model diagrams, confounding, 
indirect and interaction effects

• Assignment 1: Causal analysis with table 
elaboration.

• Simple and Multiple Regression (DJT, ch 5-
6)
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Linear models
• Linear models (Y = a + b*X) are the expression of the most common 

scientific argument: if X causes Y, we expect that more X increases Y.
• Even if such statements can be interpreted ordinally, we routinely use 

an interval model to test it.
• The linearity of the model is in practice quite flexible and can

accommodate:
– Ordinal X and ordinal Y,
– Discrete (nominal) X,
– Non-linear relationships of various kinds, including non-monotonic (e.g. 

U-shaped relationships).
– Multiple X variables.
– Extension to nominal Y are straightforward, but not trivial.

• Almost all models for whatever are a variation or extension of the 
simple linear (and additive model): GLIMs.
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Regression and OLS
• The linear model can also accommodate that X is not the 

only cause of Y, and is then phrased as: Y = a + b.X + 
residu.

• A commonly used alternative term for residu is error. This 
is fine, a long as you understand that this does NOT mean 
that the model is wrong.

• As the relationship between X and Y is probabilistic, we 
need to find values for a and b, that produce a best fitting
line.

• The most often used criterion to estimate a and b is that of 
minimizing the sum (or average) of squared residuals (SS-
res of MS-res): OLS.
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The OLS solution

• The coefficients of the simple regression 
equation are obtained as (DJT, 91):
– Slope: b = cov(X,Y) / var(X).
– Intercept: a = mean(Y)-b*mean(X).

• Forget about the computational formulae.
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Why least squares (DJT, 91)?

• It turns out that the least squares criterion is 
algebraically more convenient than (e.g. absolute 
deviations). In particular it leads to closed form 
solutions (no iterations) and additive 
decomposition of variation.

• It can also be show that OLS is – asymptotically --
equivalent to other reasonable solutions, in 
particular Maximum Likelihood – which generally 
requires iterative procedures.
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Consequences of least squares

• Least squares estimates give greater weight to 
outliers – and they can be sensitive (have greater 
variability) when you are sampling from  
distributions on which outliers can occur.

• An obvious remedy is omit outliers from you 
sample, which is sometimes known as robust
regression – but not often used.

• We will learn more about outliers and influential 
cases in the future. 



MDA 2.1: Simple and Multiple 
Regression

8

Why “regression”? 
• Why are these models called “regression” models?
 These models were first introduced by bio-statisticians 

who studied the relationship between generations of the 
same characteristic (e.g. in height). 

• The coefficient is such problems measure to what extent 
the second generation is not equal to the first generation, 
but has “regressed towards the mean”.

• So it is not a very helpful name!
• Better would be: “linear model”, “additive model” for the 

form of the model, and “OLS model” for how it is 
estimated.
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Explained variance (DJT, 91)

• A best fitting (regression) line is found by 
minimizing the SS-Error (sum-of-squared 
errors): SUM(y-^y)2.

• SS-total = SS-model + SS-error.
• SS-total = SUM(y-mean(y))2.
• SS-model = SUM(^y-mean(y))2.
• Explained variance is a proportion: SS-

model / SS-total.
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Testing the significance of the 
equation

• SS are also the ingredients of the overall F test of the 
equation:
– F = MS-model / MS-error.

• In which MS are obtained by dividing SS by the associated 
degrees of freedom:
– N total number of cases
– K number of estimated effects in model
– N-k-1 residual degrees of freedom

• The F-test is usually not so interesting, but gains 
importance when there multiple X-variables and you are 
comparing models.

• You should be able to read the ANOVA tables in regress.
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Correlation

• (Multiple) correlation R denotes the fit 
around the regression line. It is obtained as 
the sqrt(R2).

• (Simple) correlations can also be defined as 
standardized covariation: r = cov(x,y) / 
sqrt(var(x)*var(y)). 

• Simple correlations have a +/- sign and 
range between –1.00 and +1.00.
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Standardized regression

• If we express X and Y in standardized terms (z-
scores), we obtain the regression equation in 
standardized form:
– Z(Y) = 0 + beta*z(X)

• SPSS prints these beta’s rountinely (in regress), 
Stata does not.

• Standardize regression coefficients are in the same 
metric as correlation coefficients; in simple 
regression they are identical.

• Beta = B*(sd(x)/sd(y))  and B = beta*(sd(y)/sd(x))
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Multiple regression

• Multiple regression refers to multiple X-variables. 
• It is NOT the same as multivariate regression 

(which would be multiple Y-variables).
• Y = b0 + B1*X1 + B2*X2 + … + residu.
• With two X-variables the model implies a plain in 

three-dimensional space (DJT, 105), but with 
more X-variables the geometry becomes (even) 
less helpful.
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Partial interpretation

• B-coefficients in multiple regression have a partial 
interpretation: Bk informs about how Xk changes 
Y, controlling all other X-variables in the model.

• Multiple regression is a restatement of what we 
see in table elaboration.

• However, it also works when X-variables are not 
discrete (but continuous), nominal, and it also 
works if we have many X-variables.

 with regression models available, there is no need 
for tabular analysis.



MDA 2.1: Simple and Multiple 
Regression

15

How does multiple regression 
control?

• Y = B0 + B1*X1 + B2*X2
• Regress: Y = B1*X1, take RES1
• Regress: Y = B2*X2, takes RES2
• B1 can be obtained in Y = B1*RES1
• B2 can be obtained as Y = B2*RES2
Multiple regression coefficients are the 

effects of Xk of residualized Y-var.
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The F-test

• In multiple regression, the F-test in Anova become 
a bit more interesting, as it can be transformed in 
an F-change:
– F-change = ((SS-model1 – SS-model2)/df) / MS-error

• DJT, 124 present a formula using R2. This is the same. 
You can ask SPSS to calculate the F-values.

• This tests the statistical significance of the additional 
explained variance, which may be different from the 
significance B-coefficinest of the added variables.
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Dummy variables

• Multiple regression can be applied to model 
effects of a nominal X, expressed in indicator 
(0/1) dummy variables.

• Dummy variables look like different variables, but 
they are not.

• The full set of dummy variables is linearly 
dependent, we have to omit one to obtain a 
reference category.

• R2 in (simple) dummy is also know as the 
correlation ratio (DJT, p. 99).
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The reference category

• Always, always inform the reader about the 
omitted category (unlike DJT, 127).

• Never choose a very small category as the 
reference.

• It is better to be in control of the choice, but even 
better to check by entering “all” dummies. In 
particular with missing values in your data, or 
with multiple dummy sets, this can give you 
results to think twice.
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High or low R2?
• Researchers often seem to interested in obtaining high explained

variance.
• This is the wrong attitude. You should ask yourself whether a model 

adequately represents the (causal) relationships that you are studying. 
• In this sense it is incorrect to call R2 a fit-statistic.
• Adequate question to ask are:

– Is a linear specification correct? This can be tested.
– What could be omitted (confounding) variables?

• Note that omitting variables that (strongly) determine Y, but do not 
determine X, does not invalidate the model!!!

• If you omit such predictor variables, this will only effect statistical 
power.

• However, if you omit confounders, this invalidates the model.
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Test of linearity

• A simple test of linearity can be obtained by 
categorizing a continuous variable into discrete 
categories and compare the continuous variable 
with the dummy variable model.

• It is convenient when you can easily shift between 
a categorical and a continuous representation of a 
model. In Stata this can be done with the 
I.expander, in SPSS in UniAnova by choosing 
between by and with.
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Not yet discussed

• Factors affecting the size of correlation and 
regression coefficients (DJT, 94): outliers, 
leverage points, truncation, regression 
toward the mean, aggregation.

• Multi-collinearity (DJT, 108).
• SE of the Estimate.
• Regression models with (discrete) 

interactions (DJT 124). 


