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And the stories you hear, you know they never add up
I hear the natives fussing at the data chart

Pavement – Frontwards (1992)

La solution était évidente, aussi évidente que le problème avait semblé
insoluble tant qu’il ne l’avait pas résolu

Georges Perec – La Vie mode d’emploi (1978)
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Chapter 1

Setting the Problem

1.1 Introduction

It is the task of national statistical institutes (NSIs) and other statistical agencies
to produce statistical information on social and economic aspects of society, for
users such as policymakers, researchers, journalists and the general public. These
official statistics have an impact on everyday life in many different ways: they are
used by policymakers to make informed decisions and evaluate their effects, by
the government to allocate resources, by interest groups and unions as a basis for
negotiations, and by journalists and “fact checkers” to substantiate the points that
they are trying to make. It is therefore important that the quality of official statistics
is high.

Data that are collected for the production of official statistics or, more gener-
ally, for statistical analyses nearly always contain measurement errors. NSIs, other
statistical agencies and academic researchers have therefore developed methods to
handle error-prone data. Two broad classes of approaches can be distinguished:
methods that aim to reduce the effects of measurement errors by adjusting the data
themselves and methods that try to correct for measurement errors at the analysis
stage.

The first strategy is widely used in official statistics, where it is known as data
editing (De Waal et al., 2011); other terms are also used, such as data cleaning and
data validation. The second approach involves estimating a model for measure-
ment errors, either in a separate step or as part of the analysis model itself. This
strategy is more commonly adopted by researchers working outside official statis-
tics. This is not to say that these approaches are mutually exclusive. In fact, most
researchers apply at least some basic form of data editing, for instance to detect
outlying observations. So far, applications of error modelling in the production of
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Chapter 1. Setting the Problem

official statistics have been rare, but one example is provided by Van Delden et al.
(2016).

In fact, a third approach should also be mentioned: designing the data col-
lection methodology to prevent, as much as possible, measurement errors from
occurring in the first place. Much research has been done both within and out-
side official statistics to find strategies that are likely to yield correct responses to
questionnaires and other data collection instruments; see, e.g., Presser et al. (2004)
and Brancato et al. (2006). Obviously, it is important to understand which design
choices for data collection methodology work and which do not. In practice, how-
ever, it seems inevitable that some measurement errors do occur whenever data are
collected. In this thesis, we will focus on methods that can be used to address the
problem of measurement error after the data have been collected.

The aim of this thesis is to contribute to the development of editing and esti-
mating methods for dealing with measurement errors, with a particular focus on
their extension and application to large data sets from administrative sources. We
will also point out commonalities of the two approaches, by discussing the implicit
measurement error models behind certain data editing methods. This might help to
make the use of those editing methods more acceptable to academic researchers.
Conversely, we will discuss how to extend some existing measurement error mod-
els so that they can be applied in an official-statistics context.

In particular, this thesis aims to make progress on the following points. Firstly,
current methods for automatic data editing have limited applicability, because they
are based on rather restrictive assumptions. We will develop two new methods
for automatic editing of survey or administrative data that relax some of these as-
sumptions. In this way, the practical applicability of automatic editing increases.
By increasing the use of automatic methods for data editing at NSIs, the use of
other, more costly and labour-intensive methods for data editing that involve man-
ual work can be reduced. Moreover, the focus of these manual methods could then
be shifted to the most difficult cases, where their contribution is most likely to be
of use. Thus, increasing the use of automatic data editing at NSIs can lead to sta-
tistical production processes that are more efficient and yield statistical output of
higher quality.

Secondly, applications of measurement error estimation in the social sciences
usually focus on the effect of errors on bivariate and multivariate relations (e.g.,
correlations or regression coefficients). In official statistics, univariate statistics
such as population totals and means are often of interest (Skinner et al., 1989).
While, in principle, existing measurement error models can be used to estimate the
effect of errors on these univariate statistics, the design choices that are traditionally
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1.2. Types of data and types of errors

made for these models in social-science applications are not suitable in this con-
text (e.g., the use of arbitrary reference indicators to obtain model identification).
In this thesis, we will apply two different models to study the effects of measure-
ment errors on official statistics: a structural equation model and a finite mixture
model. In addition, we will discuss alternative design choices that are appropriate
in this context. In this way, an important obstacle is removed for the wider use of
measurement error models in official statistics. As will be shown below, models
for measurement errors can be used in official statistics to assess the suitability of
new data sources. Moreover, they can be used to improve the quality of statistical
output and to gain better insight into the accuracy of statistics.

Thirdly, it is known that in practice automatic data editing methods do not
resolve all measurement errors in a data set. Traditionally, the quality of auto-
matic editing methods has been evaluated by comparing them to manual editing,
under the assumption that manually-edited data are error-free. This assumption is
unlikely to hold in practice. To evaluate the effects on statistical output of measure-
ment errors that remain in the data after editing, and also to compare the amount
of measurement error before and after editing, we will use a measurement error
model which does not require the assumption that manually-edited data are always
error-free. We will also discuss how such a model could be used in practice to
improve the way official statistics are produced, both in terms of efficiency and in
terms of accuracy of the statistical output.

The remainder of this introductory chapter is organised as follows. Section 1.2
provides some background information and reviews some terminology: types of
data sources, types of errors in statistics, types of variables and types of measure-
ment scales. The editing and estimation approaches to measurement errors are
introduced briefly in Section 1.3 and Section 1.4, respectively. Having established
this context, we give an outline of the rest of this thesis in Section 1.5.

1.2 Types of data and types of errors

1.2.1 Survey data and administrative data

Statistical agencies and empirical researchers need data to generate statistical in-
formation. In the past, the required data were usually not yet available and had to
be created by conducting a survey, often by means of a questionnaire. We refer to
Bethlehem (2009), De Leeuw et al. (2008) and Groves et al. (2009) for a detailed
introduction into survey methodology based on questionnaires.

In somewhat idealised terms, the survey process consists of the following steps.
First, a research question is formulated. This question is made more precise by
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Chapter 1. Setting the Problem

defining a target population and a parameter of interest. These concepts are then
made operational: the target population is translated into a surveyable population
of units and the parameter of interest is translated into one or more measurable
properties of these units. For each operational property, one or more questions are
constructed to measure it for a unit in the survey population, by eliciting a response
from either the unit itself or from someone else about the unit. These questions are
collected in a questionnaire. In theory, the survey objective could then be fulfilled
by obtaining responses to this questionnaire about each unit in the survey popu-
lation. In practice, a complete enumeration (or census) of a survey population is
rarely taken because this is expensive, time-consuming and burdensome to soci-
ety. Moreover, statistical practice has shown that, for most purposes, sufficiently
accurate estimates of the parameters of interest can be obtained by surveying only
a fraction of the population (a sample), if this sample is selected randomly from
the survey population. Ideally, responses to the questionnaire are obtained for all
units in the sample. Sample survey theory can then be used to obtain estimates
of parameters of interest from the sample data, as well as measures of accuracy
for these estimates (bias, variance, and confidence intervals). The first satisfactory
treatment of sample survey theory was given by Neyman (1934); good overviews
of the subject can be found in Cochran (1977), Särndal et al. (1992) or Knottnerus
(2003).

In practice, complications arise for all of the above-mentioned steps in the sur-
vey process. For instance, surveys are hardly ever conducted with a single research
question in mind; rather, the aim is to answer multiple research questions or even
to construct a general-purpose data set about units in a population, which may
then be analysed by various researchers to answer various questions. At the opera-
tionalisation stage, some compromises usually have to be made with respect to the
definitions of the target population and parameters of interest, in order to obtain a
survey population that can effectively be sampled and variables that can effectively
be measured. For instance, the ideal target population of a demographic survey
might include undocumented immigrants, but these are very difficult to sample
and therefore often excluded from the survey population (Bethlehem, 2009).

Various survey modes can be used to obtain information from potential re-
spondents (Bethlehem, 2009). An interviewer can visit the respondent and record
his/her answers face-to-face, or an interview can be conducted by telephone. In the
Netherlands and other developed countries, these interviews are nowadays nearly
always done with the aid of a computer (e.g., a laptop or tablet in the case of face-
to-face interviewing). In this case, the above survey modes are commonly referred
to as Computer-Assisted Personal Interviewing (or CAPI) and Computer-Assisted
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1.2. Types of data and types of errors

Telephone Interviewing (or CATI), respectively. Alternatively to these interview-
based modes, a so-called self-administered questionnaire can be filled in by the
respondent without an interviewer being present. This can be done on paper (mail
survey) or online (commonly referred to by the misnomer Computer-Assisted Web
Interviewing or CAWI).

Modern surveys often use a mixture of modes to improve response rates and
decrease costs (De Leeuw, 2005). In fact, in any given survey only a subset of the
units in the original sample will respond. Nonresponse occurs for various reasons:
some units cannot be contacted, other units are contacted but refuse to co-operate,
still other units are willing but unable to co-operate, etc. See, e.g., Bethlehem et al.
(2011) for an overview of the non-response problem, the effects it can have on the
accuracy of survey estimates, and methods that attempt to reduce or correct for
nonresponse.

Traditional surveys can be expensive and burdensome to respondents. Over the
past decades they have also suffered from decreasing response rates (or increasing
efforts being required to obtain the same response rates) in many countries (Stoop,
2005), which makes them less attractive as a data collection method. At the same
time, the arrival of the digital age means that all kinds of non-survey data are now
generated on a regular basis by businesses, governmental agencies and other in-
stitutes for their own administrative purposes. NSIs and other statistical agencies
have started to use these administrative data more and more for official statistics,
first as auxiliary information to improve estimates based on survey data, and sub-
sequently as a replacement for survey data (Zhang, 2012). A similar trend occurs
for academic research in the social sciences (Bakker and Kuijvenhoven, 2010).

Statistics Netherlands is now using administrative data in the production of
several important statistics, both in the social and economic domain. For instance,
in the two most recent population censuses in the Netherlands (2001 and 2011)
nearly all variables were obtained from administrative sources (Schulte-Nordholt
et al., 2004, 2014). For the estimation of the 2011 census tables, sample survey
data were used only for the variables occupation and educational attainment. For
the quarterly economic statistics on turnover (which in turn are an important com-
ponent of the Gross Domestic Product), a new production system was introduced
in 2011 which uses data of value-added tax (VAT) declarations submitted by busi-
nesses to the Netherlands’ tax authorities, supplemented by a small census survey
of the largest and most complex businesses (Van Delden and De Wolf, 2013).

The advantages of using administrative rather than survey data for statistics
are fairly obvious [see, e.g., Wallgren and Wallgren (2014)]. Using data that are
already available in administrative registers is more efficient than collecting new
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data by means of questionnaires. It also removes the burden on individual persons
or businesses to provide responses to questionnaires. At the same time, this makes
the quality of statistical estimates less dependent on the willingness and ability of
individual potential respondents. In some cases, administrative data can be used
to obtain information about phenomena that are difficult to observe accurately in
surveys, such as criminal behaviour (Bakker and Kuijvenhoven, 2010). Finally,
since administrative data sources often contain a complete enumeration of their
target population and are available over time, these data may provide opportunities
to do detailed statistical analyses that would be difficult, costly or impossible with
survey data based on relatively small samples, such as estimates for small sub-
populations and certain types of longitudinal analyses.

Administrative data can also have disadvantages. Most of these have to do
with the fact that a statistical agency has less control over the way these data are
collected than with survey data. In fact, it is important to realise that adminis-
trative data are originally collected and processed by a register owner for some
non-statistical purpose (Bakker and Daas, 2012; Wallgren and Wallgren, 2014). In
many cases, the concepts and definitions that are used by the register owner differ
to some extent from the intended definitions for statistical purposes. In the above
VAT example, the original purpose of the tax declaration data is to levy taxes on
turnover. Thus, the tax authorities attempt to measure the total amount of taxable
turnover for each unit as well as possible. This is not necessarily identical to the
total amount of turnover that is needed for economic statistics; some economic ac-
tivities may be exempt from taxes but relevant to the size of the economy from a
statistical point of view, and vice versa (Van Delden et al., 2016).

By re-purposing an administrative data set for the production of statistics, a
statistical agency is forced to work with administrative concepts, at least initially.
In some (probably quite rare) applications, the administrative concept coincides
with the statistical concept, and the administrative source can be seen as a “gold
standard”. One example is provided by Mittag (2013) who used administrative
records of a food stamp program in the United States of America in a study that
focussed on amounts of food stamps received.

A related potential problem with administrative data is that the register owner
will aim to process these data in a way that is optimal for its own internal pur-
poses (Bakker and Daas, 2012). Thus, the quality of different variables in the same
administrative data set may vary according to how relevant these variables are to
the register owner (Wallgren and Wallgren, 2014). We refer to Van Delden et al.
(2014) for some examples in the Netherlands.

Another related problem is that, since the administrative data are primarily

14



1.2. Types of data and types of errors

used for a different purpose than making statistics, individual units may have an
incentive to be registered in a certain way. For instance, in the VAT data set, most
businesses will aim to report their turnover in a way that minimises the amount of
tax to be paid, which makes under-reporting more likely than over-reporting (Van
Delden et al., 2014; Wallgren and Wallgren, 2014).

It differs by country which administrative data sources exist and to what ex-
tent statistical agencies and researchers are given access to these data (Wallgren
and Wallgren, 2014). For the most recent round of world-wide population cen-
suses (circa 2011), administrative data were used as a direct data source (in some
cases supplemented by survey data) in Austria, Belgium, Denmark, Finland, Ger-
many, Israel, Latvia, Lithuania, the Netherlands, Norway, Slovenia, Sweden, and
Switzerland (UN/ECE, 2014). In other countries, notably the United Kingdom and
the United States of America, the use of administrative data for statistical purposes
has been limited so far, due to a lack of suitable registers and/or legal difficulties in
obtaining access to existing sources.

Administrative data sources have not replaced traditional surveys completely,
and it is unlikely that this will happen in the future. Many “subjective” concepts
that are of interest in the social sciences, such as attitudes, cannot be found in
any register. Surveys therefore remain necessary to collect information about these
concepts. In practice, to obtain a data set with all variables that are needed for a
particular application, it is often necessary to combine multiple administrative data
sources, or to combine administrative and survey data. The problem of linking
multiple data sources together and performing statistical inference on these linked
data is known as data integration (Zhang, 2014).

1.2.2 Errors in statistics

Statistical statements based on real data are subject to many different types of error.
Groves (1989) and Bethlehem (2009) developed taxonomies of errors in estimates
based on survey data. Bakker (2011b) and Zhang (2012) extended Groves’ taxo-
nomy to administrative data and integrated data, respectively.

With the exception of Bethlehem, these authors all made a distinction between
errors along the representation side and errors along the measurement side. Repre-
sentation errors occur when the set of observed units deviates from the intended
target population. These include: coverage error, because the survey population
as listed in the sampling frame does not include all units in the target population
(undercoverage) or includes some units that do not belong to the target population
(overcoverage); sampling error, because the sample includes only a subset of the
survey population; nonresponse error, because not all sampled units are observed.
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For probability samples, the sampling error takes the form of stochastic estimation
uncertainty. The properties of this uncertainty are well understood and its size can
be controlled under the sampling design. The effects of the other representation
errors on estimates are more difficult to quantify, but it is reasonable to assume
that all statistical estimates are affected by them to some extent. In the case of
integrated data, linkage error caused by mislinks or missed links of units between
different data sets is also an important source of representation error.

In the remainder of this thesis, we will focus on measurement errors. The
term “measurement error” will be given a more precise meaning when we consider
measurement error models in Section 1.4. For now, we use the intuitive notion of
a measurement error: a deviation of an observed value in a data set from its “true”
value.

First of all, measurement errors can arise due to differences between the def-
inition of a conceptual variable of interest and the way it is operationalised. In
particular, this often happens with administrative data because the administrative
concept differs from the statistical concept (e.g., taxable turnover for VAT purposes
versus turnover from statistically relevant economic activities). But definitional er-
rors can also occur for surveys, because the ideal conceptual variable of interest
might be too difficult to measure in a questionnaire and is therefore replaced by a
simpler, approximating concept.

In surveys, measurement errors also occur during data collection. A response
to a survey question can be seen as the result of a complex cognitive process
(Tourangeau et al., 2000; Bavdaž, 2010). Respondents can misunderstand a ques-
tion, make a mistake in their answer or deliberately provide an erroneous answer.
The latter problem arises in particular for questions about “sensitive” subjects, such
as fraud or drug addiction. Even for non-sensitive subjects, it has been found that
responses to survey questions are affected by the way these questions are formu-
lated: different wordings of a question or (for a multiple-choice question) different
sets of possible answer categories generally produce different response distribu-
tions (Saris and Gallhofer, 2007; Bethlehem, 2009). Under the assumption that a
unique true response exists for each respondent (see also the next subsection), this
finding implies that different question wordings are subject to different amounts of
measurement error. Measurement errors can even arise after data collection during
further data processing – for instance, when paper questionnaires are scanned and
digitised by optical character recognition (De Waal et al., 2011).

For some administrative sources, the data collection and storage process is very
similar to that of surveys. For instance, the above-mentioned VAT declarations are
submitted by businesses to the tax authorities on a regular basis (monthly, quar-
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terly or yearly), using a paper form or a web form. This data collection process
is comparable to that of a mail or CAWI survey; in fact, a tax form looks very
similar to a survey questionnaire. It therefore seems plausible that similar mea-
surement errors occur during data collection (Bakker, 2011a). Wallgren and Wall-
gren (2014, pp. 29–30) suggested that measurement errors in administrative data
are influenced more by accounting principles and legislation than by cognitive pro-
cesses, although they did not deny that such processes exist also for administrative
reporting.

Other administrative sources are less similar to surveys, because data are gen-
erated and stored continuously rather than at fixed intervals. These registers are
longitudinal and “event-driven”: the data of each unit remain fixed until a new
event occurs. As an example, consider the Base Registration of Persons (the pop-
ulation register of the Netherlands) which is maintained by municipalities. Here,
the “events” that prompt changes in the register are events that occur in the lives of
persons living in the Netherlands (births, deaths, marriages, moves, etc.). Persons
report these events to the municipality where they are registered and the register
is updated. So-called administrative delays, in which an event is registered some
time after it actually occurred, are an important source of measurement error in this
situation (Bakker, 2011a). The registration process itself could be compared to that
of a CAPI survey, with municipal civil servants acting as “interviewers” for their
residents. An important difference with survey data is that a version of the data
set can be obtained at any desired time point. However, the “event-driven” nature
of the register implies that data at closely-spaced time points will be correlated
strongly.

For yet other administrative sources, the data collection process is not compa-
rable to that of any survey mode. Some NSIs – including Statistics Netherlands –
are currently experimenting with a new form of data collection, by which data are
extracted directly from the accounting systems of businesses (Snijkers et al., 2016).
A crucial feature of this approach are the links between the statistical variables of
interest and the variables in the accounting data. In the Netherlands, these links
are established through the so-called Reference Classification System of Financial
Information (in Dutch: Referentie Grootboek Schema) and have to be set up manu-
ally by the reporting unit the first time the system is used. This manual translation
between statistical and administrative concepts is now the main – if not the only
– source of measurement error: any erroneous link will systematically affect all
future data extractions. On the other hand, this approach leaves virtually no room
for random response errors in the individual data extractions, as these are entirely
automated.
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Representation and measurement errors can have either a systematic or a ran-
dom effect on a statistical estimator Ŷ , or both. The net effect of all errors can be
summarised in terms of the mean squared error (MSE) of the estimator, which is
defined as its expected squared deviation from the true parameter value Y :

MSE(Ŷ ) = E(Ŷ − Y )2.

The MSE can be decomposed into bias and variance:

MSE(Ŷ ) = {E(Ŷ )− Y }2 + E{Ŷ − E(Ŷ )}2

≡ {bias(Ŷ )}2 + var(Ŷ ). (1.1)

The bias component captures the net effect of all systematic error contributions and
the variance captures the net effect of all random error contributions.

In practice for traditional sample surveys, often only the sampling error is taken
into account when estimating the MSE, as this is relatively easy to do. It is then
tacitly assumed that the sampling error dominates the contributions of all other
representation errors and measurement errors. For census surveys and for estima-
tors based on administrative data or integrated data, this assumption is not tenable.
Even for many sample surveys, it is adopted more out of convenience than because
of its plausibility. Ideally, all types of error should be taken into account in the
MSE, which then becomes a measure of the so-called total survey error. The prob-
lem of quantifying the total survey error in practice is discussed by, among others,
Groves (1989) and Biemer and Lyberg (2003). In particular, the contribution of
measurement errors in the observed data to the bias and variance of an estimator
can be evaluated as part of the total survey error.

1.2.3 True scores and true values

An observed variable is the result of applying some measurement procedure to
each unit. This measurement procedure might involve, for instance, obtaining a
response to a question on a survey form, or obtaining a value from an administrative
report. Biemer (2011) distinguished between the true score and the true value
of an observed variable for a given unit. The true score is the “average” value
that we would expect to find for a unit under the measurement procedure (in a
sense that will be made more precise in Section 1.4). This true score might be
different from the true value of the concept that we are trying to measure for that
unit. As a simple example, suppose that we measure the height of a person by a
very crude procedure: using a stick that is known to be exactly one metre long,
we simply count the number of whole “stick lengths” that best approximate the
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person’s height. Under this procedure, the true score of a given person might be “2
metres”, whereas his actual height (true value) may be, for instance, “1.85 metres”.
Under different measurement procedures that aim to measure the same concept for
a given unit, the true scores may vary but the true value remains the same.

Biemer’s true values and true scores correspond to what are known as, respec-
tively, platonic true scores and operational or classical true scores in the literature
on measurement in sociology and psychology [e.g., Sobel and Arminger (1986);
Biemer and Stokes (1991)]. It is often posited that platonic true scores exist only
for some variables, namely those that can (in theory) be measured “objectively”
by some other means than asking questions. Thus, for instance, a person’s height
clearly has a platonic true score which is defined independently of the way we
choose to measure it. On the other hand, a person’s intelligence (at the moment)
can be measured only “subjectively” by means of a questionnaire (an intelligence
test). For the latter type of variable, only an operational true score can be meaning-
fully defined, according to these authors.

Borsboom et al. (2003) objected to this distinction on philosophical grounds.
In fact, most measurement models that are used in the social sciences (and in par-
ticular all models that will be considered in this thesis) are so-called reflective mod-
els, in which the outcome for an observed variable is explained by the underlying
unobserved concept that is being measured. (This can be contrasted to formative
models, in which a concept is constructed from several observed variables.) Bors-
boom et al. (2003) argued that the use of a reflective model is consistent only with
the philosophical stance that the concepts that are being measured really exist. In
particular, this implies that each unit must have a true value that exists indepen-
dently of the measurement procedure, even for a variable such as intelligence that
cannot be observed directly.

In most of the applications in this thesis, we will assume that we are dealing
with variables for which true values not only exist but can also be observed, at least
in principle. In particular, this assumption pervades the literature on data editing,
although it is not always made explicit: that the true value exists and could be ob-
tained for any unit if a sufficient editing effort were made – although in practice it is
not feasible to make this effort for all units, given time and budget constraints. This
assumption seems reasonable for many “factual” variables that are encountered in
official statistics, such as turnover, income, etc.

1.2.4 Measurement levels

According to measurement theory, different levels of measurement or types of scale
can be distinguished. Usually, five basic levels of measurement are defined: nom-

19



Chapter 1. Setting the Problem

inal, ordinal, interval, ratio and absolute (Stevens, 1946, 1959). The measurement
level determines which meaningful conclusions about a variable of interest can be
inferred from the observed values (Sarle, 1997).

In the literature on data editing, a somewhat less formal distinction is often
made between categorical variables and numerical (or continuous) variables; see,
e.g., De Waal et al. (2011). This convention will be followed in the parts of this
thesis on data editing (in particular Chapters 3–5). Categorical and numerical vari-
ables are conceptualised as having a finite and infinite number of possible values,
respectively. [In fact, De Waal et al. (2011) assume that numerical variables are
real-valued and treat integer-valued variables as a separate type.] Of course, data
are always observed and processed with finite precision. In practice, the categorical
variables are the ones that have a very limited number of possible values.

Unfortunately, this informal distinction between categorical and numerical vari-
ables does not correspond exactly to a distinction between traditional measurement
levels. In practice, most numerical variables will be measured at the interval level
or higher and most categorical variables will be nominal or ordinal variables, but it
is possible to find counter-examples (Sarle, 1997).

The methods to be discussed in this thesis nearly always assume that one is
dealing with numerical variables and/or variables that can be measured at the inter-
val level or higher. The main exception occurs in Chapter 4 which deals explicitly
with categorical as well as numerical variables. In particular, the measurement
error models that will be considered in Chapters 6–7 are all designed for interval-
or-higher-level variables. Measurement error models for nominal and ordinal vari-
ables are discussed, for instance, by Biemer (2011).

1.3 The editing approach

We will now review the two approaches for handling error-prone data that were
introduced in Section 1.1: the editing approach and the estimation approach. We
start with the editing approach.

Traditionally, NSIs and other statistical agencies have always spent much effort
on checking and, if necessary, adjusting the data that they collect for measurement
errors. Over time, a more or less standardised process for data editing has evolved
(EDIMBUS, 2007; De Waal et al., 2011).

A prerequisite of any data editing method is that it is – in principle – possible to
identify records that contain erroneous values. This requires some form of external
information with which the observed data can be compared. An important type of
external information consists of restrictions that would be expected to hold if the
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data were error-free. These restrictions are often called edit rules, or edits for short.
Examples of edit rules include:

• univariate range restrictions – for instance: “Turnover ≥ 0” (for businesses)
or “Age (in years) ∈ {0, 1, . . . , 120}” (for persons);

• balance edits – for instance: “Turnover − Costs = Profit”;

• ratio edits – for instance: “Total Staff Costs / Number of Employees ≤
100,000 Euros”.

A distinction can be made between hard edit rules and soft edit rules. A hard
edit must be satisfied by any error-free record; in other words, if a record does not
satisfy a hard edit then we know that this record must contain at least one error.
By contrast, if a record does not satisfy a soft edit then this means that the data
are implausible (suspicious) but not necessarily incorrect. Of the above examples,
“Turnover ≥ 0” and “Turnover − Costs = Profit” are hard edits (they have to hold
by definition), while the other two are soft edits. For instance, it is unlikely for a
person to be more than 120 years old, but not impossible.

It is straightforward to check each record in a data set against a given set of
edit rules. Nowadays, such edit checks are nearly always automated. It is much
less straightforward to work out how to adjust a given record of data that does not
satisfy all edit rules. The end result should be an adjusted record that satisfies at
least all hard edits, but there are typically many possible adjustments that could be
made and it is usually not obvious which of these will correct the actual underlying
errors. The adjustments can be done manually by subject-matter experts (known as
editors) or automatically by a dedicated software program. Manual editing is more
flexible than automatic editing, as editors can use external sources of information
(including re-contacts with the respondent) to improve the quality of the data. On
the other hand, manual editing is much more time-consuming and expensive, and
it is also less reproducible as it may depend on subjective decisions by the editors.

Most NSIs nowadays apply some form of selective editing (Di Zio and Guarn-
era, 2014). This means that a selection procedure is used to identify the records in a
data set that are most likely to contain important errors (i.e., errors that would have
a noticeable impact on statistical output). These selected records are then edited
manually. The selection procedure itself can be automated (e.g., by computing an
“error score” for each record and selecting all records with a score above a certain
threshold value) or manual (e.g., by letting an editor select outlying observations
in a scatter plot).
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The non-selected records are either not edited or they can be edited automati-
cally. A possible advantage of editing the non-selected records automatically is that
it leads to a data set in which all records are at least consistent with all hard edit
rules (De Waal and Scholtus, 2011). This is particularly important if the micro-data
themselves are part of the statistical output.

Regarding methods for automatic editing, a distinction is often made in the data
editing literature between so-called systematic errors and random errors (De Waal
et al., 2011). In this context, these terms have a somewhat different meaning than
the bias and variance decomposition in formula (1.1). Here, the terms “systematic”
and “random” refer to the mechanisms that cause the errors rather than their effects
on an estimator. In fact, different definitions exist. According to UN/ECE (2000),
a systematic error is “an error reported consistently over time and/or between re-
sponding units.” Alternatively, EDIMBUS (2007) defines a systematic error as
“a type of error for which the error mechanism and the imputation procedure are
known.” The term random error is used simply for any error that is not systematic.

Automatic methods for correcting systematic errors usually take the form of
relatively simple IF-THEN rules. The IF statement describes a condition which
identifies a particular systematic error, while the THEN statement describes the
adjustment that should be made to the data to correct that error. Such deductive
correction rules can be designed to formalise and automate correction strategies
that are used by subject-matter experts for certain errors that are known to occur
frequently. Some examples will be given in Chapter 3.

The problem of finding random errors in a record is known as the error lo-
calisation problem in the data editing literature. Automatic editing methods for
random errors at NSIs are usually based on a formulation of the error localisation
problem as a mathematical optimisation problem (De Waal et al., 2011). That is
to say, the data in a record are “minimally” adjusted under the restriction that they
have to satisfy all edit rules. Different methods can be obtained by choosing dif-
ferent minimisation criteria. The most widely used error localisation methods are
based on the paradigm of Fellegi and Holt (1976) which minimises the number of
values in a record that are changed. The underlying assumption is that most val-
ues are reported correctly to begin with; therefore, it would appear that by making
a record consistent with the edit rules while leaving as many values unchanged as
possible, we have the best chance of correcting the actual errors in that record. This
heuristic argument can be made more precise; see Section 2.4.

For reasons of efficiency and timeliness, it is desirable to limit the amount of
manual editing involved in a data editing process as much as possible (Pannekoek
et al., 2013). In fact, if efficiency were the only criterion, the ideal editing process

22



1.4. The estimation approach

would involve only automatic editing. However, it is generally assumed that data
that have been edited automatically are of lower quality than data that have been
edited manually by subject-matter experts (EDIMBUS, 2007).

At Statistics Netherlands at the beginning of the 21st century, a series of evalu-
ation studies were conducted in which the same original data sets were edited both
manually and automatically (Van der Pijll and Hoogland, 2003; Bikker, 2003). A
number of systematic differences were found between the two edited data sets. For
instance, editors sometimes find that respondents have interchanged the correct re-
sponses to two related questions (e.g., costs and revenues); they resolve this error
by interchanging the responses again. This solution is virtually never chosen dur-
ing automatic error localisation, because according to the Fellegi-Holt paradigm it
is suboptimal to change two variables when it would suffice to change one. Some
significant differences could also be seen in the estimated population totals based
on the two edited data sets. These results indicate that the current automatic edit-
ing methodology alone is not sufficient to obtain edited data of adequate quality
for publication purposes, and that selective manual editing of the most important
errors remains necessary.

1.4 The estimation approach

We now turn to the estimation approach. Under this approach, given a data set that
contains measurement errors which might invalidate statistical outcomes based on
the data, one uses a model to estimate the amount of measurement error and some-
how correct the statistical outcomes directly, without trying to identify individual
errors.

If the data have been collected to estimate a statistical model of substantive
interest, one possible approach is to extend the analysis model with a model for
the measurement errors and to estimate both models simultaneously. In the econo-
metrics literature, such models are known as errors-in-variables models. There ex-
ists an extensive literature on this subject; see, e.g., Durbin (1954), Fuller (1987),
Bound et al. (2001) and Carroll et al. (2006). In this thesis, we will focus on
measurement error models that can be estimated separately from any particular
statistical analysis based on the data. These models can be useful to evaluate the
overall measurement quality of the observed variables.

Consider an observed variable y which is the outcome of some measurement
procedure. For instance, it might be obtained as a response to a question on a
survey form or from an administrative data source. Perhaps the simplest possible
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measurement error model for y is defined by the following formula:

y = T + ϵ. (1.2)

Here, ϵ denotes a random measurement error and T denotes the true score of the
observed variable. It is assumed that ϵ is uncorrelated to T in the population. By
definition, the random measurement error ϵ has an expected value of zero for each
respondent. That is to say, the true score T for a given respondent is the average
value that we would observe for y if the measurement procedure were repeated
infinitely often for this respondent under identical circumstances. Here, “identical
circumstances” implies in particular that at each repetition the respondent would
have no memory of any of his/her previous responses. Clearly, this could never be
achieved in practice, and in this sense the true score T is an unobservable or latent
variable. It is a theoretical construct, but, as it turns out, a useful one.

Model (1.2) was originally developed in the field of educational testing and
later extended to other applications in psychometrics. There exists an extensive
theory based on variants of this model, known as the classical test theory (Lord
and Novick, 1968).

As noted above in Section 1.2.3, the true score of an observed variable need
not be equal to the true value of the variable of interest, because the measurement
procedure might be systematically biased. Within the context of psychometrics for
which the classical test theory was originally developed, researchers have generally
focussed on analysing true scores rather than true values, because true values can-
not be defined objectively for variables that arise in this context (e.g., intelligence).
However, with applications in official statistics, there is often a natural interest in
true values. In this thesis, we will therefore focus mostly on models that relate
observed variables to the underlying true values of the variables of interest. In fact,
the same modelling techniques can be applied to true scores or true values – the
difference lies in the interpretation of the model parameters (Sobel and Arminger,
1986).

Let F denote the true value of the variable of interest that is measured by the
observed variable y. Like the true score T , the true value F is treated as a latent
variable. Later in this thesis, we will consider applications where F is assumed to
be – in principle – observable, but not necessarily observed for all respondents. The
relationship between the true value and the true score can be modelled in different
ways. A relatively simple, linear model is given by:

T = a+ bF + U, (1.3)

where a and b denote intercept and slope parameters and U denotes a disturbance
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term. The disturbances U represent systematic errors in the measurement proce-
dure; unlike ϵ, the value of U for a given respondent is considered fixed under
(hypothetic) repeated application of the measurement procedure. In the special
case U = 0, the relationship between T and F is perfectly linear, and (1.2) and
(1.3) define the following model for y:

y = a+ bF + ϵ. (1.4)

The parameters a and b in (1.3) and (1.4) describe the relation between the true
scale of the variable of interest and the scale of the observed variable. In the special
case a = 0 and b = 1, the observed variable provides unbiased measurements of
the variable of interest. If a ̸= 0, the observed variable contains an intercept bias,
i.e., a systematic deviation which is the same for all respondents. If b ̸= 1, the
observed variable contains a systematic deviation which is proportional to the true
value. That is to say, the absolute size of this systematic deviation is larger for
respondents with larger true values.

In the literature on measurement error models, the measurement quality of an
observed variable is often described by its reliability and validity. These properties
can be defined in terms of the (common) variation in the distributions of y, T and
F in a population of potential respondents. Somewhat different definitions are
given in the literature. In this thesis, we will follow the terminology of Saris and
Andrews (1991) and Scherpenzeel and Saris (1997). See also Lord and Novick
(1968, Chapter 2) or Chapter 2 of this thesis for more details about the assumed
sampling distribution of y, T and F .

The reliability of y is the square of the correlation between the observed vari-
able and its true score: R(y) = ρ2(y, T ). It is a measure of the absence of random
measurement error. A value of R(y) close to 1 indicates that y is an accurate mea-
sure of whatever it is that it is measuring. This does not guarantee that y is also
an accurate measure of the variable of interest, because it could still be affected
by systematic measurement error in the form of U in (1.3). Note for instance that
the crude “stick-length” measurement procedure of Section 1.2.3 probably yields
measurements that are very reliable: basically, this procedure attempts to round the
height of a person to the nearest metre, which in most cases leaves hardly any room
for random error.

The true-score validity of y is equal to the square of the correlation between
its true score and its true value: TV(y) = ρ2(T, F ). The term “true-score valid-
ity” is due to Saris and Andrews (1991); Biemer (2011) used the alternative term
theoretical validity. Whatever terminology is used, a value of TV(y) close to 1
indicates that y is strongly related to the variable of interest after correction for
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random measurement error. This implies that the influence of systematic measure-
ment errors on y is small. In the example of height measurement by stick lengths,
the true-score validity is probably quite low: the heights of persons rounded to the
nearest metre are only weakly correlated to their true heights.

Finally, the indicator validity of y is equal to the square of the correlation
between the observed variable and its true value: IV(y) = ρ2(y, F ). Biemer (2011)
called this the empirical validity. This quantity captures the joint effect of random
and systematic measurement errors on y. In fact, it will be seen in Chapter 2 that
IV(y) = TV(y)× R(y).

Being squared correlations, R(y), TV(y) and IV(y) all take on values between
0 and 1. Note that the simplified model (1.4) has TV(y) = ρ2(T, F ) = 1 and
R(y) = IV(y). Thus, the distinction between reliability and (indicator) validity is
relevant only for variables that contain systematic as well as random measurement
errors.

For a single observed variable y, the model given by (1.2) and (1.3) is not iden-
tified, because there is no unique way to separate the observed y into latent factors
F , U and ϵ. To obtain an identified model, we need to have multiple observations
on the same set of respondents: different measures for the same variable of in-
terest and/or measures for different variables of interest and/or observations from
different waves of a panel study.

As an example, consider a situation where J different variables of interest
F1, . . . , FJ are measured each by K different observed variables y1j , . . . , yKj

(j = 1, . . . , J). Suppose that each of these K × J observed variables can be
modelled by an instance of the simple model (1.4):

ykj = akj + bkjFj + ϵkj , (1.5)

with the additional assumption that the ϵkj are mutually uncorrelated in the pop-
ulation. For the purpose of estimating the reliability and validity, the joint model
is identified in the presence of at least two variables of interest with at least two
measures each (i.e., for J ≥ 2 and K ≥ 2). The model is also identified for a
single variable of interest with at least three measures (i.e., for J = 1 and K ≥ 3).
The identification of the intercept and slope parameters themselves introduces an
additional complication (see the end of Section 2.3.2). Several other examples
of designs that lead to identified measurement error models will be discussed in
Chapter 2.

Model (1.5) is an example of a structural equation model. Structural equation
modelling provides a framework that can be used to estimate a wide variety of
measurement error models. [See, e.g., Bollen (1989) for a general introduction.]
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Authors who discussed applications of structural equation modelling to estimate
reliability and validity include Heise and Bohrnstedt (1970), Jöreskog (1971), An-
drews (1984), Saris and Andrews (1991) and Scherpenzeel and Saris (1997).

Once a measurement error model has been estimated, the results can be used
in different ways. In questionnaire design, there is a tradition of using structural
equation models to evaluate how choices made in the design of questions affect
the reliability and validity of the obtained responses (Saris and Gallhofer, 2007;
Alwin, 2007). Questions in future surveys could then be designed to optimise the
reliability and validity of measurement. The studies listed at the end of the previous
paragraph, starting with Andrews (1984), were all conducted with this aim in mind.
In a data-integration context, measurement error modelling can also provide useful
information: if several potential data sources (existing surveys or administrative
data sets) are available for the production of statistical results, we can estimate the
reliability and validity of the variables in these sources and compare them, in order
to choose the best source.

In addition, an estimated measurement model can be used to correct statistical
outcomes for the biasing effects of measurement errors in a data set. A well-known
example concerns the estimation of correlation coefficients. Suppose that we are
interested in the correlation between two variables F1 and F2 which are measured
by y11 and y12, respectively, and suppose that model (1.5) holds for these observa-
tions. Then it can be shown that the observed correlation ρ(y11, y12) is related to
the true correlation ρ(F1, F2) in the following way:

ρ(y11, y12) = ρ(F1, F2)ρ(y11, F1)ρ(y12, F2)

= ρ(F1, F2)
√

IV(y11)IV(y12).

This follows as a special case of Formula (4) in Scherpenzeel and Saris (1997); a
direct proof proceeds along the lines of Lord and Novick (1968, pp. 69–70). Under
this simple model, measurement errors always cause the correlation to be attenu-
ated towards zero. Under more complex models, the correlation can be either atten-
uated or inflated by measurement errors (Bound et al., 2001). Having estimated the
indicator validities of y11 and y12, we can easily obtain an error-corrected estimate
of the true correlation ρ(F1, F2):

ρ(y11, y12)√
IV(y11)IV(y12)

.

Univariate statistics may also be biased in the presence of measurement errors.
From the estimated parameters of an error model, it is possible to obtain predictions
of the true values of the variables of interest, in order to correct individual variables
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for systematic deviations in scale, such as intercept bias; see Meijer et al. (2012)
and Chapter 6 of this thesis. More generally, these predicted true values can be
used as a basis for imputation, either to handle non-response or to facilitate the
estimation process (Boeschoten et al., 2016).

All measurement error models that fit within the structural equation modelling
framework assume that the random measurement errors follow a continuous dis-
tribution. This implies that an observed value of a variable that contains errors
has zero probability of being equal to the underlying true value. This assumption
may not always be reasonable. In some cases, it may be more realistic to suppose
that errors are “intermittent” (Di Zio and Guarnera, 2013): an observed value has
a certain probability of being error-free (i.e., exactly equal to the underlying true
value) and otherwise it contains an error from a continuous distribution. Measure-
ment models with this property are known as contamination models (Bound et al.,
2001). For instance, a contaminated version of model (1.5) is given by:

ykj = (1− zkj)Fj + zkj(akj + bkjFj + ϵkj), (1.6)

where zkj denotes a 0-1-indicator such ykj contains an error if zkj = 1 and no
error if zkj = 0. The probability of observing an error in ykj is denoted by
πkj = P (zkj = 1). This probability affects the indicator validity of ykj (see
Section 2.3.3) and is also an interesting measurement quality parameter in its own
right. Applications of model (1.6) to administrative data are discussed by Guarnera
and Varriale (2015, 2016) and Robinson (2016) and in Chapter 7 of this thesis.

1.5 Outline of the rest of this thesis

The remaining chapters of this thesis are organised as follows. Chapter 2 pro-
vides a detailed review of existing work on the editing and estimation approaches
to measurement errors. Reading this chapter first may be helpful to put the new
results in the other chapters into context, but in principle each chapter can be read
independently of the others.

Chapters 3–5 focus on new methods for automatic editing. In Chapter 3, we
look at deductive correction methods for systematic errors. Correcting systematic
errors in a separate step at the beginning of a data editing process can improve the
efficiency of data editing as well as the quality of the edited data. This is true be-
cause, if a systematic error can be corrected accurately by a deductive rule, it does
not have to be treated later on by a human editor or a more complex algorithm for
automatic error localisation. This means that editors and more complex algorithms
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can focus attention on cases with more complicated error structures, where their
contribution is more likely to be worthwhile.

With the above aims of improving efficiency and quality in mind, two new de-
ductive methods are developed for correcting two errors that are known to occur in
data of the so-called Structural Business Statistics (SBS) at Statistics Netherlands:
sign errors and rounding errors. Both methods require an algorithm that is more
complex than a simple IF-THEN rule, but they are still relatively easy and cheap
to implement. Theoretical properties of the algorithms are investigated. By way of
illustration, both algorithms are applied to real data from the Netherlands’ SBS of
2007.

In Chapters 4 and 5, we focus on error localisation for random errors. Two
generalisations of the Fellegi-Holt paradigm are proposed that aim to improve the
quality of automatically-edited data. Both generalisations address a different limi-
tation of the existing Fellegi-Holt paradigm.

Chapter 4 posits the idea that some of the systematic differences that have been
found between manual and automatic editing may be explained by the fact that
human editors make use of soft edits as well as hard edits, whereas the Fellegi-Holt
paradigm for automatic editing assumes that only hard edit rules occur. Under the
Fellegi-Holt paradigm, soft edits have to be either ignored or treated as hard edits
during automatic error localisation. We propose a new formulation of the error
localisation problem that can distinguish between hard and soft edit rules. The
new approach involves solving a minimisation problem that is a generalisation of
the problem of Fellegi and Holt, with an extra term that measures the extent to
which soft edit rules are violated. The new problem can be solved by an extension
of the existing error localisation algorithm of De Waal and Quere (2003). To test
the new method, a simulation study is conducted with synthetic data.

The Fellegi-Holt paradigm tacitly assumes that errors independently affect one
variable at a time. By contrast, human editors often make adjustments to the data
that involve more than one variable at a time. It is in fact likely that respondents
often make errors that affect several variables simultaneously. In Chapter 5 we
therefore introduce a generalised error localisation problem in which the assump-
tion is relaxed that errors affect one variable at a time. This problem is based
on a new minimisation criterion which involves the number of required edit op-
erations rather than the number of changed values. Here, each edit operation is
a well-defined elementary adjustment that can be made to a record to correct one
particular error, which might involve changing the values of one, two, or more vari-
ables simultaneously. It is suggested that these edit operations be chosen to mimic
the operations made by human editors as well as possible. The Fellegi-Holt-based
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error localisation problem is in fact a special case of the new problem, obtained by
restricting the set of admissible edit operations to one particular class (i.e., oper-
ations that impute a new value for a single variable). An algorithm is developed
for solving the new error localisation problem. This algorithm is used in a simula-
tion study with synthetic data to compare the new approach to Fellegi and Holt’s
original error localisation problem.

Chapters 6 and 7 focus on applications of measurement error models. In Chap-
ter 6, we use a measurement error model to estimate the quality of administrative
and survey data for official statistics. It is shown how both the indicator validity
and intercept bias of administrative and survey variables can be estimated through
structural equation modelling. In particular, the indicator validity can be used as a
measure to decide whether the administrative concept is sufficiently related to the
true variable of interest to be of use. In cases where the validity is high but sig-
nificant intercept bias occurs, a correction formula can be derived from the model
by predicting the true value of the variable of interest from the observed value. To
fully identify the model, we take a random subsample of our original observations
and attempt to measure the true values for these units (an audit sample). The inclu-
sion of an audit sample is necessary for the estimation of the true intercept bias and
true correction formulas for the observed variables, but not for indicator validity.

The methodology is applied to real data at Statistics Netherlands to estimate
the validity and intercept bias of VAT turnover for short-term statistics (monthly
or quarterly statistics on the development of the economy). Structural equation
models are fitted to linked data from three administrative sources (VAT, the Profit
Declaration Register and the General Business Register) and one survey (SBS).
Additional data for an audit sample are obtained by re-editing the survey data.
The results of the structural equation models are compared to earlier results by
Van Delden et al. (2016) based on robust linear regression. We also simulate an
application of the estimated correction formulas from the model to publication
figures for the short-term statistics.

In Chapter 7, we use measurement error modelling to gain insight into the
quality of edited data. The indicator validity and bias of observed variables in a data
set of the Netherlands’ SBS before and after automatic editing are evaluated and
compared. We analyse the data using two different models: a structural equation
model and a contamination model. The latter model seems more appropriate for
the data at hand, but its current formulation does have some limitations that require
further development.

Finally, a summary of the results of this thesis follows in Chapter 8. We also
draw some conclusions from these results, about their potential application to im-
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prove the quality of official statistics and about questions for future research.
Note: Some chapters are based on articles or reports that have been published

previously; if so, this is indicated at the start of the chapter. If a chapter features
co-authors then their names and contributions are indicated similarly at the start of
the chapter. The remaining chapters (1, 2, and 8) have been written specifically for
this thesis with Sander Scholtus as the single author.
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Chapter 2

Editing and Estimation of
Measurement Errors

2.1 Introduction

In this chapter, we give a more detailed overview of the two approaches for hand-
ling measurement errors in statistical data that were introduced in Section 1.3 and
Section 1.4: editing and estimation. The main aim of this chapter is to provide
some context for the new methodological research that will be discussed in the rest
of this thesis. In addition, we take the opportunity to mention here some features of
the two approaches of which a discussion did not fit naturally into the other chap-
ters – in particular, some general thoughts on their application to administrative
data. The editing approach is discussed in Section 2.2; the estimation approach
in Section 2.3. In Section 2.4, we briefly discuss a connection between the two
approaches by examining measurement error models that occur in the literature on
data editing. Some conclusions follow in Section 2.5.

2.2 The editing approach

2.2.1 Methods for statistical data editing

We begin this section by reviewing different types of data editing methods that
have been developed over time: manual editing, selective and macro-editing, and
automatic editing.

Manual editing

In the traditional data editing process, all data were edited by hand. Human editors
would check each record of data against a set of edit rules (see Section 1.3), identify
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the records that contain inconsistencies with respect to these rules and then try to
correct errors in these records by making adjustments. In the past, respondents
were often re-contacted to clarify implausible responses.

As noted in Section 1.3, a distinction can be made between hard and soft edit
rules. Traditionally, the data were edited manually until all inconsistencies with
respect to hard edits had been resolved and all inconsistencies with respect to soft
edits had been resolved or explained. As a result, the data editing process was
very time-consuming and labour-intensive. It has been estimated that, by the late
1980s, NSIs and other statistical agencies would spend up to 20 to 40 per cent of
their survey costs on data editing (Federal Committee on Statistical Methodology,
1990; Granquist, 1995, 1997).

In the last decades, many innovations have been introduced to improve the
efficiency of data editing (see below). Nevertheless, manual editing is still a part
of nearly every data editing process, although it is now focussed on a subset of the
data. Nowadays, editors are usually supported by a computer; the term interactive
editing is then also used (Scholtus, 2014c).

The role of re-contacts has also changed over time. In current surveys, subject-
matter experts often try to edit the data without contacting the respondent. Re-
contacts are avoided because they add to the response burden of a survey. More-
over, in particular for business surveys, editors can often find much of the informa-
tion they need about responding units on the internet or in dedicated databases.

Granquist (1997) argued that, if re-contacts are used, their aim should not just
be to correct individual errors in the data, but rather to find out the causes of these
errors. In this way, the editing process can reveal deficiencies of the data collection
design – such as question formulations that are difficult to answer correctly – that
might be improved in future surveys. In the long run, reducing the number of
measurement errors during data collection is more useful than trying to correct
these errors later on. According to Granquist (1997), “editing should highlight, not
conceal, serious problems in the survey vehicle.”

Selective editing and macro-editing

Electronic computers have been used to support the data editing process since the
1950s (Nordbotten, 1963; Stuart, 1966). Somewhat unexpectedly, the introduction
of (mainframe) computers often actually led to an increase in the costs and time
spent on the data editing process. The reason for this was that the computer could
be used to check the data against more – and more complex – edit rules than was
possible before. In particular, this led to a proliferation of soft edit rules. However,
all records that did not satisfy these edits were still checked and, if necessary,
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adjusted manually by editors (Granquist, 1995).

One way to improve the efficiency of a data editing process is by improving
the formulation of the edit rules, in particular the soft ones (Granquist, 1997). By
varying, for instance, the upper bound of a ratio edit, one obtains different risks of
false positives (when the edit is failed by an observation that is correct) versus false
negatives (when the edit is satisfied by an observation that does contain an error).
The formulation of an effective soft edit involves balancing these two risks and is
therefore a statistical problem (Di Zio et al., 2005b). Granquist (1995, 1997) noted
that a recurring problem with surveys in the 1980s was that soft edits yielded too
many false positives.

A more fundamental improvement is based on the realisation that, for nearly
every application in official statistics, it is unnecessary and in fact undesirable
to edit a data set until all edit violations have been either resolved or explained
(Granquist and Kovar, 1997; De Waal et al., 2011). The main output of NSIs con-
sists of relatively simple descriptive statistics of a population (totals, means, ratios)
that are not particularly sensitive to small errors in individual observations. In fact,
the effects of individual errors might well cancel out when the data are aggregated
to the population level. Moreover, statistical estimates are subject to other sources
of error besides measurement errors, as discussed in Section 1.2.2. It is not very
useful to focus attention on correcting measurement errors if the total survey er-
ror is dominated by other types of error (e.g., undercoverage). In particular, for
sample-based estimates the effect of measurement errors might be small in com-
parison to the sampling error, once the most important errors have been corrected.

This notion that it is not necessary to edit all data in every detail – which can be
found implicitly already in Nordbotten (1955) – became widely acknowledged in
the 1980s and 1990s. Studies were done that showed empirically that accurate es-
timates of population means and totals could be obtained by editing only the most
important errors in a data set; see, e.g., Granquist (1995, 1997) and Granquist and
Kovar (1997). This prompted the development of new data editing methods called
selective editing and macro-editing which aim to identify (select) the records that
are likely to contain the most important errors. The selected records are then edited
manually. Different selection methods and tools were discussed by, among oth-
ers, Hidiroglou and Berthelot (1986), Granquist (1990), Lawrence and McKenzie
(2000), Hedlin (2003), Hoogland (2006), Arbués et al. (2013), Di Zio and Guarnera
(2013) and Norberg (2016). See also Di Zio and Guarnera (2014) for an overview.
These methods all focus on numerical variables and are used mainly for business
surveys.

We will not discuss methods for selective editing in detail here. One feature
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that should be mentioned is that, traditionally, selective editing is done essentially
by cut-off sampling: all records that satisfy a certain criterion are selected for man-
ual editing, and no other record is. Ilves and Laitila (2009) noted that this non-
probability sampling approach makes it impossible to estimate the total amount of
measurement error that remains in the non-selected part of the data. Thus, the qual-
ity of selective editing cannot be evaluated during regular production – this would
require a separate study in which some of the non-selected records are edited as
well. To overcome this problem, Ilves and Laitila (2009) suggested the use of a
probabilistic selection criterion instead. For instance, in addition to the records that
satisfy the original selection criterion, a small subset of the other records could be
selected for manual editing by probability proportional to size sampling, with the
inclusion probability of each record based on the expected influence of its errors.
In that case, sampling theory could be used to estimate the effects of the remaining
measurement errors in the non-selected records on statistical output.

Automatic editing

Most NSIs nowadays use selective and/or macro-editing to restrict manual editing
to those observations that are likely to contain influential errors (i.e., errors that are
likely to affect the statistical output in a significant way). The remaining obser-
vations can be left as they are, or they can be edited automatically. Methods for
automatic editing have been developed since the 1960s (Freund and Hartley, 1967).
In automatic editing, a software program checks the data against the edit rules and
also makes adjustments to the data to obtain consistency with these rules.

De Waal and Scholtus (2011) argued that it can be useful in practice to edit
the non-selected records in a data set automatically, even though the errors within
these records should have a limited impact on statistical output. Firstly, it is often
desirable to ensure that all data are at least consistent with the hard edit rules, be-
cause inconsistencies with respect to these rules (e.g., totals that are not equal to
the sum of their parts) might lead statistical users to reject the data. Automatic edit-
ing provides an efficient way to obtain consistency with the hard edits. Secondly,
automatic editing of the non-selected records also provides an inexpensive way to
check whether the selection criteria for influential errors are working correctly: if
they are, only relatively small errors should be found during automatic editing. Fur-
thermore, Pannekoek et al. (2013) noted that if automatic editing methods can be
improved to the point where they yield data of reasonable quality, this means that
less data would have to be selected for manual editing to obtain the same overall
quality. Thus, the efficiency of the data editing process could be improved further.

Automatic editing will be discussed in detail in Chapters 3–5 of this thesis. For
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now, it is useful to note that different automatic editing methods exist for system-
atic and random errors (as defined in Section 1.3). Systematic errors are corrected
deductively, sometimes by simple algorithms and more often by means of so-called
correction rules which take the form of IF-THEN rules. The idea behind such a
rule is that a certain type of error is made in the same way by different respon-
dents, can be recognised in the data, and once it has been recognised it is obvious
how to correct it. In practice, an error is called systematic when such a correction
procedure is possible.

The best-known example of a systematic error is the so-called unit of measure-
ment error or “thousand error”. Often, business surveys contain an instruction to
report amounts that are rounded to the nearest multiple of 1,000 units. Invariably,
some respondents ignore or misread this instruction and report amounts in single
units, which the NSI then interprets as being 1,000 times too large. This error is
often relatively easy to detect, for instance by comparing the observed values to ref-
erence values from a different source or from a previous survey, either numerically
or graphically (in a scatter plot). Different methods for detecting thousand errors
are discussed by Di Zio et al. (2005a, 2007), Al-Hamad et al. (2008) and De Waal
et al. (2011). Once the error has been detected, correcting it is straightforward.

De Waal and Scholtus (2011) distinguished generic and subject-related sys-
tematic errors. A systematic error is called generic if it occurs in essentially the
same way for a variety of different variables and data sources. Examples include
the above-mentioned unit of measurement error and simple typing errors where,
for instance, a respondent writes “379” instead of “397” (Scholtus, 2009). By con-
trast, a subject-related systematic error affects a specific variable in a specific data
source. The correction of such an error requires subject-matter knowledge. An
example, given by De Waal and Scholtus (2011), is that businesses in the construc-
tion industry often incorrectly report the specification of staff by department, with
too many employees classified as “working in other departments”.

Automatic correction of generic and subject-related systematic errors is usually
done at the beginning of a data editing process, even before selective or macro-
editing is applied (Pannekoek et al., 2013). After this step, only random errors
remain in the data. As mentioned in Section 1.3, the automatic editing problem
for data that contain random errors is known as the error localisation problem, and
most methods for solving this problem that are currently in use at NSIs are based
on the paradigm of Fellegi and Holt (1976).

According to the Fellegi-Holt paradigm, each record should be made consis-
tent with all edit rules by adjusting the smallest possible number of observed val-
ues. Since the accuracy of measurement might be different for each variable, the
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paradigm is often generalised by assigning a so-called confidence weight wk to
each observed variable yk. The objective is then to find a subset of variables that
can be adjusted to obtain a consistent record and has the minimal sum of confidence
weights among such subsets. That is to say, the expression

K∑
k=1

wkδk (2.1)

is minimised, with δk = 1 if yk is adjusted and δk = 0 otherwise, under the re-
striction that the adjusted record must satisfy all edit rules. Note that this approach
implicitly assumes that all edit rules are hard.

The error localisation problem under the Fellegi-Holt paradigm is computation-
ally challenging in practice. Its complexity increases with the number of observed
variables and the number of edit rules. Over the past decades, many NSIs have
developed dedicated algorithms for solving this error localisation problem. Differ-
ent solutions were suggested by, among others, Fellegi and Holt (1976), Schaffer
(1987), Garfinkel et al. (1988), Kovar and Whitridge (1990), Ragsdale and McK-
eown (1996), De Waal (2003c), De Waal and Quere (2003), Riera-Ledesma and
Salazar-González (2003, 2007), Bruni (2004), and De Jonge and Van der Loo
(2014). See also De Waal et al. (2011, Chapters 3–5) for a detailed overview.

2.2.2 Administrative data

The data editing methods discussed above were originally developed for survey
data. Di Zio and Luzi (2014) discussed their extension to administrative data. In
broad terms, the data editing process for administrative data can be similar to that
for survey data. A few important differences occur, however.

Firstly, manual editing of administrative data is complicated by the fact that
these data were originally collected and processed outside the NSI. It is likely that
these data have already been subjected to some form of data editing by the register
owner to make them suitable for administrative purposes, but the NSI usually has
little information about this. Editors may also have less information about the way
the data were collected and the way administrative variables are defined, which
makes it more difficult to identify and resolve errors in the data. Moreover, it is
usually impossible or illegal for NSIs to re-contact individual units in an admin-
istrative data set. If serious problems are found in the data, it may be possible to
contact the register owner and obtain a new version of the entire data set.

A second important difference is that administrative data usually contain a
much larger number of units than survey data. This increases the importance of
having an efficient data editing process. Standard selective editing approaches for
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survey data may not be useful for large administrative data sets, because the se-
lected subset of units is still so large that manual editing would be too costly or
time-consuming. Automatic editing methods could therefore be very useful for ad-
ministrative data, provided that these methods can yield data of sufficient quality.

2.3 The estimation approach

2.3.1 The true-score measurement error model

In Section 1.4, a number of useful measurement quality parameters were intro-
duced from the point of view of a very simple measurement error model: intercept
bias, reliability and validity. We will now examine these concepts again using a
more general measurement error model that was originally proposed for survey
data by Saris and Andrews (1991). This will provide a useful starting point for
a review of some survey designs by which these measurement quality parameters
can be estimated in practice, which will follow in Section 2.3.2. Section 2.3.3 re-
examines the contamination model that was also mentioned in Section 1.4. The
possibilities of applying these models to administrative data are discussed in Sec-
tion 2.3.4.

As before, we use F to denote the true value of a variable of interest, that is, an
attribute that we would like to measure. An attempt is made to measure F as well as
possible – e.g., by asking a question on a survey form – and the resulting observed
variable is denoted by y. In the presence of measurement errors, the individual
values of y and F will not be identical. Saris and Andrews (1991) proposed to
model the relation between y and F in the following way:

y = a+ bF + gM + u+ ϵ (2.2)

= T + ϵ.

In this expression, ϵ denotes a random measurement error term, and a, b and g are
constants.

The remaining components of formula (2.2) aim to capture all systematic in-
fluences on the observed variable. As noted in Section 1.2.2, it is well-known that
answers to survey questions can depend on other factors than the variable of interest
itself; e.g., the wording of a question or the set of possible answer categories. In ex-
pression (2.2), the variable M denotes the systematic contribution of the “method”
by which y is measured. This method component can include all kinds of aspects
of the way the question is presented to the respondent [e.g., length of the question
text, number of answer categories, survey mode; see Andrews (1984) or Scherpen-
zeel and Saris (1997) for more examples]. As will be seen in the next subsection,
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it is assumed that one can hold the method component “fixed” while varying the
variable of interest. That is to say, the same method can be used to measure dif-
ferent variables of interest for the same respondent and the value of M in (2.2)
is then supposed to be the same in each instance. In fact, the method component
is assumed to be uncorrelated to the variable of interest [see (2.4) below]. Any
interaction between the variable of interest F and the method component M that
might also influence y is included in the so-called “unique component” u. Finally,
the factor T denotes the true score of y – i.e., the stable part that remains when the
observed variable is corrected for random measurement error (Lord and Novick,
1968) – which under this model equals a+ bF + gM + u.

To complete the formulation of the error model, we have to add the follow-
ing assumptions, which state that the various error components in (2.2) have an
expected value of zero and are both uncorrelated amongst themselves and uncorre-
lated to the variable of interest:

E(M) = E(u) = E(ϵ) = 0 (2.3)

and

cov(F,M) = cov(F, u) = cov(F, ϵ) = cov(M,u)

= cov(M, ϵ) = cov(u, ϵ) = 0. (2.4)

The sampling distribution to which these expectations and covariances refer is de-
fined as follows [cf. Lord and Novick (1968, Chapter 2)]. Consider a (finite or
infinite) population of potential respondents. Each respondent i is supposed to
have a hypothetical distribution of potential responses that could be obtained by
repeating the measurement procedure for y infinitely many times under identical
conditions. (In this hypothetical setting, the respondent is supposed to have no
memory of any responses that he/she gave previously.) The random measurement
error ϵi captures all variability within the potential response distribution of respon-
dent i. The expected value of this response distribution, and hence the expected
value of yi, is defined to be equal to Ti = a+ bFi+gMi+ui. From this, it follows
that E(ϵi) = 0 for each respondent i under (hypothetical) repeated measurement.
The expected value of yi depends on the choice of variable of interest (through Fi

and ui) and the choice of method (through Mi and ui). Next, imagine a sampling
procedure by which one respondent i is selected at random from the population and
its values yi, Fi, Mi, ui and ϵi are obtained once. (Of course, in practice only the
value of yi would be observed.) The random variables y, F ,M , u and ϵ in (2.2) are
defined by this sampling procedure. In particular, the expectations and covariances
in (2.3) and (2.4) refer to the outcome of this random sampling of respondents.
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It is worth repeating that, under this model, the values of F , M and u for a
given respondent are assumed to be fixed: under repeated observation of the same
respondent under identical conditions, only the value of ϵ would vary.

According to (2.2) and (2.3), the expected value of y when sampling from
the population of respondents equals E(y) = E(T ) = a + bE(F ). Thus, the
parameters a and b in (2.2) capture differences in scale between the variable of
interest and the observed variable. In particular, a represents the so-called intercept
bias. A non-zero value of a can affect statistics about the population distribution
of a single variable (e.g., estimates of population means and totals) but it will not
have any impact on statistics about relationships between variables (e.g., regression
coefficients or correlations). In social science applications, for which this error
model was originally developed, only the latter type of statistics are usually of
interest and the possibility of intercept bias is usually ignored. In official statistics,
however, population means and totals are often part of the statistical output, so
intercept bias may be an important aspect of measurement quality. The estimation
of intercept bias introduces an additional complication, so we defer a discussion of
this point until the end of Section 2.3.2. We first focus on some other measurement
properties.

In what follows, for simplicity we assume that b > 0. Given the form of
(2.2), this is in fact a necessary condition for y to qualify as a measure of F in
the terminology of Lord and Novick (1968, p. 20): “We shall call an observable
variable a measure of a theoretical construct if its expected value is presumed to
increase monotonically with the construct.”

Several useful measurement quality parameters can be defined in terms of the
above error model (Scherpenzeel and Saris, 1997). Firstly, the reliability coefficient
of y is equal to its correlation to the true score:

RC(y) = ρ(y, T ) =
cov(y, T )√
var(y)var(T )

=
var(T )√

var(y)var(T )
=

√
var(T )
var(y)

. (2.5)

The third equality follows from (2.2) and assumption (2.4). Taking the square of
the reliability coefficient yields the fraction of total variance in y that is explained
by the stable components F , M and u:

R(y) = RC2(y) =
var(T )
var(y)

= 1− var(ϵ)
var(y)

. (2.6)

This quantity is known as the reliability of y. It corresponds to the so-called “test-
retest reliability” in the classical test theory (Lord and Novick, 1968).

Secondly, the true-score validity coefficient of y is equal to the correlation of
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its true score to its true value:

TVC(y) = ρ(T, F ) =
bvar(F )√

var(T )var(F )
= b

√
var(F )
var(T )

. (2.7)

The second equality follows from T = a+bF+gM+u and assumption (2.4). The
right-most expression in (2.7) shows that TVC(y) is equal to the standardised co-
efficient of F in a linear regression of T on F andM , with u as a disturbance term.
Taking the square of this validity coefficient yields the fraction of total variance in
T that is explained by the variable of interest:

TV(y) = TVC2(y) =
b2var(F )
var(T )

. (2.8)

Heise and Bohrnstedt (1970) proposed (essentially) this quantity as a measure of
the validity of y. Saris and Andrews (1991) suggested the term true-score valid-
ity to avoid confusion with other definitions of validity. Biemer (2011) used the
alternative term theoretical validity.

Thirdly, the indicator validity coefficient of y is equal to its correlation to the
true value:

IVC(y) = ρ(y, F ) =
bvar(F )√

var(y)var(F )
= b

√
var(F )
var(y)

. (2.9)

Taking the square of this coefficient yields the fraction of total variance in y that is
explained by the variable of interest alone:

IV(y) = IVC2(y) =
b2var(F )

var(y)
. (2.10)

Saris and Andrews (1991) called (2.10) the indicator validity of y; Biemer (2011)
used the term empirical validity. Table 2.1 summarises the above measurement
quality parameters for ease of reference.

Table 2.1: Overview of measurement quality parameters under the true-score model.

Name Abbreviation Definition Formula
Reliability coefficient RC(y) ρ(y, T )

√
var(T )/var(y)

True-score validity coefficient TVC(y) ρ(T, F ) b
√

var(F )/var(T )
Indicator validity coefficient IVC(y) ρ(y, F ) b

√
var(F )/var(y)

From expressions (2.5)–(2.10) it is easy to derive that

IVC(y) = TVC(y)× RC(y), (2.11)

IV(y) = TV(y)× R(y). (2.12)
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Thus, the indicator validity of y summarises the joint effect of random and system-
atic measurement errors on y. For this reason, Saris and Andrews (1991) preferred
to report separate true-score validity and reliability coefficients, as these are easier
to interpret. However, it will be seen below that the true-score validity of a variable
is often more difficult to estimate than its indicator validity.

All of the above measurement quality parameters take on values between 0 and
1, with values closer to 1 indicating better measurement properties. In particular, it
follows from (2.12) that

IV(y) ≤ R(y), (2.13)

IV(y) ≤ TV(y). (2.14)

Property (2.13) is sometimes stated as “high reliability is necessary, but not suffi-
cient, for high validity”. It is worth noting that this holds true for indicator validity
but not for true-score validity: it is in fact possible for the same measure to have
low reliability and high true-score validity with respect to some variable of interest.

2.3.2 Designs for estimating measurement quality

As noted in Section 1.4, the various components of model (2.2) (i.e., the contri-
butions of the variable of interest, the method component, the unique component
and the random measurement error) cannot be separated if one observes only a
single variable y. If multiple observations are available on the same respondents,
then it may be possible to identify the model by treating the different components
as latent factors in a structural equation model (SEM). Structural equation mod-
elling in general will be introduced in Chapter 6. In the present subsection, we
consider a number of research designs that have been used in the past to estimate
the measurement quality parameters listed in Section 2.3.1 for survey data.

Multitrait-multimethod designs

The multitrait-multimethod (MTMM) design, originally proposed by Campbell
and Fiske (1959), combines a number of variables of interest (traits) with a number
of methods. In the basic set-up, each trait is measured once using each method for
all respondents. Thus, if there are J variables of interest F1, . . . , FJ and K meth-
ods M1, . . . ,MK , then the MTMM design requires J ×K observations for each
respondent. If these measurements are collected in a vector y = (y11, . . . , yKJ)

′,
where ykj denotes the observed value for variable of interest Fj measured by
methodMk, then the MTMM design allows one to estimate the variance-covariance
matrix of y. Heise and Bohrnstedt (1970) and Jöreskog (1971) proposed to analyse
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this matrix using an SEM. This idea was developed further and applied to versions
of model (2.2) by Andrews (1984) and Saris and Andrews (1991).

In terms of the MTMM notation of the previous paragraph, (2.2) can be written
as an SEM as follows:

ykj = Tkj + ϵkj , (2.15)

Tkj = akj + bkjFj + gkjMk + ukj , (2.16)

where each combination of j and k contributes one instance of (2.15) and one in-
stance of (2.16). In SEM terminology, (2.15) is a measurement equation and (2.16)
is a structural equation. In addition to (2.3) and (2.4), it is now also assumed that
cov(ϵkj , ϵk′j′) = 0 and cov(ukj , uk′j′) = 0 for all pairs of distinct measures. This
latter assumption is crucial to the model but not easy to achieve in practice: as the
MTMM design essentially involves asking respondents a set of K slightly altered
questions about each of the J traits, the responses to questions about the same trait
could easily become correlated because respondents remember, and try to remain
consistent with, their previous answers. The risk of these memory effects can be
reduced by dividing the different questions for each trait over multiple interviews,
but this requires the additional (untestable) assumption that the true score of the re-
spondent has not changed between interviews. Within a single interview, the risk of
memory effects can be reduced by interspersing the questions about each variable
of interest among large numbers of similarly formatted questions. For the latter
approach, Van Meurs and Saris (1990) suggested as a rule of thumb that memory
effects can be ignored provided that each pair of repeated questions is separated by
at least 20 minutes of similarly formatted questions with related content.

If one is not interested in the intercept bias akj , the model given by (2.15)–
(2.16) can be simplified by standardising all variables ykj , Tkj , Fj and Mk to have
mean 0 and variance 1. (The disturbance terms ϵkj and ukj remain unstandardised.)
This leads to the following equations:

yskj = hskjT
s
kj + ϵ∗kj , (2.17)

T s
kj = bskjF

s
j + gskjM

s
k + u∗kj . (2.18)

Here, yskj , T
s
kj , F

s
j and M s

k denote standardised variables and the new coefficients
are given by

hskj =

√
var(Tkj)
var(ykj)

,

bskj = bkj

√
var(Fj)

var(Tkj)
,

44



2.3. The estimation approach

and

gskj = gkj

√
var(Mk)

var(Tkj)
.

Thus, referring back to Table 2.1, it is seen that the reliability, true-score validity
and indicator validity coefficients of ykj can be obtained directly from the param-
eters of the standardised SEM:

RC(ykj) = hskj ,

TVC(ykj) = bskj ,

IVC(ykj) = hskjb
s
kj .

These expressions are also given by Scherpenzeel and Saris (1997). By analogy to
the true-score validity coefficient, they define gskj as a further measurement quality
parameter called the method effect. In addition, the quantity 1− (bskj)

2 = (gskj)
2+

var(u∗kj) is known as the invalidity of ykj . In what follows, we will focus on
reliability and validity.

As it stands, the model given by (2.17)–(2.18) cannot be estimated, because
each observed variable ykj contributes both a random measurement error ϵkj and a
unique component ukj and these cannot be distinguished. (The model is not identi-
fied.) Saris and Andrews (1991) discussed three possible solutions to this problem.
Firstly, the model can be made identifiable by repeating the whole MTMM design
across two (or more) waves of a panel study. From a theoretical point of view,
this is the best solution, as it allows one to estimate the model as formulated above
without introducing any new assumptions. However, it would place an even higher
burden on the respondents than the original MTMM design. Applications of this
panel-based extension have therefore been rare (Saris and Andrews, 1991).

A second option is to assume that all unique components ukj are zero. Under
this assumption, all variation in ykj that is not explained by the latent factors Fj and
Mk must be due to random measurement error. This approach was advocated by
Saris and Andrews (1991) and Scherpenzeel and Saris (1997), who called (2.17)–
(2.18) with this additional assumption the true-score MTMM model. The true-
score MTMM model yields estimates of the reliability, true-score and indicator
validity and method effect for each of the observed variables. Saris (1990b) and
Saris and Andrews (1991) argued that the assumption of zero unique components
is plausible if the variables y1j , . . . , yKj that are supposed to measure Fj indeed all
measure the same variable of interest, i.e., all systematic differences between these
observed variables are captured by the methods M1, . . . ,MK . They also pointed
out that in rare cases where the above repeated MTMM design was used and the
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unique component variances could be estimated, these turned out to be close to
zero (Rodgers, 1989; Andrews, 1984, footnote 14).

A third option is to ignore the true scores and replace (2.17)–(2.18) by

yskj = ℓskjF
s
j +ms

kjM
s
k + wkj , (2.19)

where the disturbance term wkj captures both ϵkj and ukj . Saris and Andrews
(1991) called this the classical MTMM model, since it pre-dates the true-score
formulation. In applications that use this approach, the reliability and validity of
ykj are defined as 1 − var(wkj) = (ℓskj)

2 + (ms
kj)

2 and (ℓskj)
2, respectively. This

definition of validity is equivalent to indicator validity as defined by (2.10). The
definition of reliability corresponds to the squared multiple correlation coefficient
in the regression of ykj on Fj and Mk [as suggested, e.g., by Bollen (1989)] and
is not, in general, equivalent to (2.6). From the point of view of the true-score
model, this is a drawback. Another drawback of the classical MTMM model is
that it cannot be used, in general, to estimate the true-score validity. However,
Saris and Andrews (1991) pointed out that if the assumption that ukj = 0 in fact
holds, the true-score and classical MTMM models are equivalent. In particular,
their definitions of reliability then coincide, and the true-score validity may be
derived under the classical model using expression (2.12):

TV(ykj) =
IV(ykj)

R(ykj)
=

(ℓskj)
2

(ℓskj)
2 + (ms

kj)
2
.

Both the classical and true-score MTMM models as defined above are theoreti-
cally identified provided that data are available on J ≥ 3 correlated traits combined
with K ≥ 3 methods (Költringer, 1990). Usually, the assumption is added that the
method factors M1, . . . ,MK are uncorrelated with each other (Scherpenzeel and
Saris, 1997). In practice, if this assumption is not made, the model with J = 3

traits and K = 3 methods has often been found to be empirically underidentified
(as evidenced by convergence problems during model estimation and by unstable
parameter estimates). See Scherpenzeel (1995) for a detailed study of this and
other practical issues that may arise with MTMM models.

The MTMM design places a heavy burden on respondents. If the above rule
of thumb by Van Meurs and Saris (1990) is adhered to, collecting MTMM data for
K = 3 different methods in a single interview requires that respondents answer
similarly structured questions for more than 40 minutes. With questionnaires of
this length, there is a substantial risk that the accuracy of measurement changes as
the interview goes on. Saris and Gallhofer (2007, p. 219) suggested that, initially,
the accuracy could be higher for questions that are asked later in the survey, be-
cause respondents have had more time to think about the subject of the survey and
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Table 2.2: Example of a two-group and three-group split-ballot MTMM design with K =
3 methods, as suggested by Saris et al. (2004).

First Second
Group 1 M1 M3

Group 2 M2 M3

First Second
Group 1 M1 M2

Group 2 M2 M3

Group 3 M3 M1

have become more familiar with the interviewing process. At some point, how-
ever, respondents are likely to become tired or annoyed and the accuracy of their
responses will start to decrease. Moreover, surveys with long questionnaires often
suffer from high non-response rates, which means that their conclusions may be
biased due to selection effects.

To improve the feasibility of MTMM studies, Saris et al. (2004) proposed the
so-called split-ballot MTMM design. Respondents are divided at random into a
number of groups and each group is assigned a questionnaire which contains all
the MTMM questions for a different subset of the K proposed methods. Thus, for
each respondent only some of the ykj are observed, but all ykj are observed for at
least some of the respondents. Saris et al. (2004) showed that, for some judicious
choices of this split-ballot design, it is possible to estimate all parameters of the
true-score or classical MTMM model from the joint information in all groups, us-
ing the fact that the missing observations are “missing by design”. Table 2.2 shows
two examples of feasible split-ballot MTMM designs forK = 3 methods, with two
and three groups of respondents, respectively. In these examples, each respondent
has to answer questions for only two of the methods. Therefore, much shorter ques-
tionnaires can be used than for the full MTMM design. Revilla and Saris (2013)
tested these split-ballot MTMM designs in a simulation study. They found that, for
samples of small to moderate sizes, the two-group design in Table 2.2 often led to
problems during estimation due to empirical underidentification. The three-group
design in Table 2.2 performed well under a variety of conditions.

Since evaluating the measurement quality of survey variables by an MTMM
design is costly – both in terms of resources and response burden –, attempts have
been made to generalise the results of MTMM studies so that they might be used
to predict the reliability and validity of variables in other surveys. Andrews (1984)
was the first to perform a meta-analysis of several studies based on the classical
MTMM design. He used multiple classification analysis to find a predictive model
for the reliability and (indicator) validity coefficients of measured variables in six
MTMM studies, as a function of a large set of characteristics of the underlying
survey questions. Descriptions of similar, larger meta-analyses for the true-score
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MTMM design can be found in Saris and Münnich (1995) and Scherpenzeel and
Saris (1997). Further work in this area led to the development of the Survey Quality
Predictor (SQP) computer program (Saris and Gallhofer, 2007; Saris et al., 2011).
This program enables users to predict the reliability, validity and method effect of
a proposed survey question based on its characteristics, without having to carry out
an MTMM study themselves. SQP makes use of a database with the results of a
large number of previous MTMM studies.

Repeated multi-method designs

Saris (1990a) suggested an alternative design to estimate the measurement qual-
ity parameters of Section 2.3.1, called the repeated multi-method (RMM) design.
Here, a two-wave panel survey is used in which a single variable of interest F is
measured by K different methods M1, . . . ,MK at both points in time. A strong
assumption of this approach is that a respondent’s score on the variable of interest
and indeed his/her true score for each method have not changed between the two
points of measurement, which are supposed to be fairly close in time. If ytk denotes
the observed value with methodMk at time point t (t ∈ {1, 2}), then the true-score
model (2.2) for these measurements can be written as the following SEM:

ytk = Tk + ϵtk, (2.20)

Tk = ak + bkF + Uk. (2.21)

In (2.21), the contributions of method Mk and its unique component uk have been
combined into a single disturbance term Uk, because the method effect cannot
be identified under this RMM design. It is assumed that cov(ϵtk, ϵt′k′) = 0 and
cov(Uk, Uk′) = 0 for all pairs of distinct measures.

After standardisation of ytk, Tk and F in (2.20)–(2.21), the following equations
are obtained:

ystk = hstkT
s
k + ϵ∗tk,

T s
k = bskF

s + U∗
k ,

with

hstk =

√
var(Tk)
var(ytk)

,

bsk = bk

√
var(F )
var(Tk)

.
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Thus, it is seen that the reliability, true-score validity and indicator validity co-
efficients of ytk are given by hstk, bsk and hstkb

s
k, respectively. One would expect

hs1k = hs2k to hold (i.e., y1k and y2k should be equally reliable), but this restriction
is not enforced by the model.

Saris and Andrews (1991) noted that the RMM design with a single variable
of interest requires K ≥ 3 methods for the model to be identified. This again
leads to practical problems due to memory effects and a high response burden.
Alternatively, two or more (correlated) variables of interest can be modelled jointly,
in which case the use of K ≥ 2 methods for each Fj is sufficient for identification.
In contrast to the MTMM approach, the RMM approach does not require that the
same set of methods is used to measure each variable of interest.

Quasi-simplex designs

The designs discussed so far all assume that it is possible to obtain multiple mea-
surements of a variable of interest for the same respondents by different methods.
This is necessary to separate the true score T into its valid (F ) and invalid com-
ponents [M and u in the formulation of (2.2)]. A glance at the expressions in
Table 2.1 reveals that one needs this separation to estimate the true-score and/or
indicator validity of an observed variable, but not to estimate its reliability. The
quasi-simplex approach has been used as an alternative, less complicated data col-
lection design that allows one to estimate only the reliability. This design was
proposed by Heise (1969). An extensive discussion of this approach, including
generalisations not considered here, can be found in Alwin (2007).

The quasi-simplex design requires a panel survey of at least three waves, where
the same variable of interest F is measured by the same method M during each
wave. In contrast to the RMM design, the quasi-simplex design explicitly models
the development of the true score of the observed variable between the points of
measurement, so it does not require the assumption that the variable of interest
remains constant over time. If yt and Tt denote the observed variable and its true
score at wave t, respectively, then the quasi-simplex version of model (2.2) is as
follows:

yt = Tt + ϵt, (2.22)

Tt = ct + dtTt−1 + vt, (2.23)

where ct and dt are coefficients of the regression of Tt on Tt−1 and vt denotes a
disturbance term. The measurement errors ϵt and disturbances vt are assumed to
be uncorrelated to each other and to measurement errors and disturbances at other
time points.
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After standarisation of all yt and Tt, (2.22)–(2.23) are replaced by

yst = hstT
s
t + ϵ∗t ,

T s
t = dstT

s
t−1 + v∗t ,

where

hst =

√
var(Tt)
var(yt)

,

dst = dt

√
var(Tt−1)

var(Tt)
.

By comparison to (2.5), it is seen that hst corresponds to the reliability coefficient
of yt. In fact, under the quasi-simplex design with three waves, only the reliability
of y2 is identified and one needs to make the assumption that hs1 = hs2 = hs3. More
generally, this design can be used to estimate the reliability of y for all waves of
the panel survey except the first and last one (Saris and Andrews, 1991).

Congeneric measures designs

Finally, we consider the case that a number of traits F1, . . . , FJ are measured by
various methods at a single point in time, where different methods may be used
for each trait. (This is similar to the repeated multi-method design but without the
repetition over time.) Let ykj denote the observed value for Fj measured by its kth

method (say, Mkj). Since the lack of repetition of methods makes it impossible
to separate random and systematic measurement error, we consider the following
simplified version of model (2.2):

ykj = akj + bkjFj + ekj . (2.24)

The disturbance term is now equal to ekj = gkjMkj +ukj + ϵkj . It is assumed that
cov(ekj , ek′j′) = 0 for all distinct measures. Jöreskog (1971) considered (2.24) as
a general model for so-called congeneric measures. As noted in Section 1.4, this
model is identified for a single variable of interest that is measured by at least three
methods, or for J ≥ 2 correlated variables of interest with two or more methods
each.

Upon standardisation, (2.24) is replaced by

yskj = bskjF
s
j + e∗kj , (2.25)

with

bskj = bkj

√
var(Fj)

var(ykj)
.
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Note that if the true-score model of Section 2.3.1 holds, then, by virtue of as-
sumptions (2.3)–(2.4), the simpler model (2.24) can be used to obtain a consistent
estimate of bkj and akj . Therefore, to estimate these parameters of the true-score
model, we can always use the congeneric measures model, even if the data were
originally collected by a more complicated design (e.g., the MTMM design). In
fact, variations on the congeneric measures model will be used for that purpose in
all applications in this thesis.

It also follows that bskj corresponds to the indicator validity coefficient of ykj
given by (2.9). The true-score validity and reliability of ykj cannot be estimated
directly under the congeneric measures model. Through inequalities (2.13) and
(2.14), the indicator validity of ykj does provide a lower bound for both the reli-
ability and true-score validity of ykj . (Similar inequalities hold for the associated
validity and reliability coefficients.) This is particularly informative if ykj has high
indicator validity; for instance, if IVC(ykj) = bskj = 0.95 then it follows that
0.95 ≤ RC(ykj) ≤ 1 and 0.95 ≤ TVC(ykj) ≤ 1.

Identification and intercept bias

The models discussed so far in this section are all examples of SEMs with latent
variables. The parameters of such a model are not naturally identified, regardless
of the number of observed variables that are included in the model. This is true
because, without additional assumptions, each latent variable is defined only up to
an arbitrary linear transformation (Bollen, 1989). That is to say, the observed data
do not fully determine the scale (or metric) of a latent variable. To assign a metric
to the latent variables and achieve model identification, some restrictions should be
added on the parameters of an SEM.

For the congeneric measures model (which will be our main focus in the rest
of this thesis), Little et al. (2006) discussed three types of restrictions that can be
used to fix the metric of the latent variables Fj . The two devices that are used most
commonly in practice are: standardising the latent variables or using reference
indicators. The latter approach introduces restrictions akj = 0 and bkj = 1 for one
observed variable for each j, thereby giving the latent variable Fj the same metric
as the observed variable ykj .

For the purpose of estimating the indicator validity of the observed variables in
a congeneric measures model, the intercept parameters akj can be ignored and the
other parameters can be identified by any of the three methods in Little et al. (2006).
The resulting values of IVC will be identical, as these depend only on standardised
parameters of the model. More generally, for all SEMs considered in this chapter,
the values of RC, TVC and IVC do not depend on the method of identification
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that is used. In particular, identification can be achieved by standardising the latent
variables, as we have done throughout this section.

If one is also interested in estimating the intercept bias of each observed vari-
able with respect to the true value, the choice of identification device does matter.
Standardisation is not an option in this case. The reference indicator approach
could be used here, but only if it is reasonable to assume that the reference indica-
tors provide unbiased measurements of the underlying true values – that is, the true
intercept akj of each variable that is chosen as a reference indicator should be 0 and
its true slope bkj should be 1. The most obvious way to ensure this is by choosing
as reference indicators “gold standard” measures of the variables of interest which
– for practical purposes – can be assumed to contain no errors. According to Bielby
(1986a,b), this is the only way to obtain meaningful estimates of the measurement
intercept and slope parameters in applications where true values are of interest.

Sobel and Arminger (1986) noted that it is sufficient to collect “gold standard”
data only for a random subsample of the units in the original data set. By for-
mulating the identification problem as a missing-data problem, one can still use
the partially observed variables as reference indicators to fix the scale of the latent
variables for all units. This is very convenient, as the collection of “gold standard”
data can be difficult, costly or otherwise inconvenient in practice. This approach is
discussed more extensively in Scholtus (2014b) and Chapter 6 of this thesis.

2.3.3 Contamination models and other measurement models

In the literature, many variations can be found on the error models and designs that
were discussed in Section 2.3.2. For instance, Kenny (1976) proposed an alterna-
tive SEM formulation that can be used to analyse an MTMM matrix, known as
the correlated uniqueness model. Other authors have proposed measurement error
models that are multiplicative rather than additive; see, e.g., Wothke and Browne
(1990) and a discussion by Saris and Andrews (1991). More recently, Oberski et al.
(2017) have proposed an extension of the MTMM model that is particularly aimed
at evaluating the quality of administrative as well as survey variables. This model
is not an SEM but it does fit within a more general class of latent-variable models
that was introduced by Skrondal and Rabe-Hesketh (2004).

Under any SEM the event of observing a value that is equal to the true value (or
even the true score) occurs with probability zero for any variable which contains
measurement errors. That is to say, all observed values of an error-prone variable
are supposed to be wrong to some extent. As noted in Section 1.4, the alterna-
tive assumption that error-free observations occur with some non-zero probability
leads to so-called contamination models (Bound et al., 2001; Di Zio and Guarnera,
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2013).
A contaminated extension of the congeneric measures model (2.24) is:

ykj = (1− zkj)Fj + zkj(akj + bkjFj + ekj), (2.26)

where zkj denotes a random variable on {0, 1} that generates an error in ykj when
zkj = 1. Thus, the observed variable ykj has a distribution which is a mixture of
two components: part of the observed values are error-free and the other observed
values contain errors according to the congeneric measures model. Di Zio and
Guarnera (2013) called this an intermittent error mechanism. Model (2.26) is an
example of a so-called finite mixture model (McLachlan and Peel, 2000).

With this contamination model, an important new measurement quality para-
meter is the probability of observing an error in ykj : πkj = P (zkj = 1). Since the
indicator validity of the observations in the error-free part of the data is equal to
1, a reasonable definition for the overall indicator validity coefficient of ykj under
this model is:

IVC(ykj) = (1− πkj)× IVC(ykj |zkj = 0) + πkj × IVC(ykj |zkj = 1)

= (1− πkj) + πkjbkj

√
var(Fj |zkj = 1)

var(ykj |zkj = 1)
,

where bkj and the variances of Fj and ykj should now be evaluated only in the
error-prone part of the data.

Guarnera and Varriale (2015, 2016) proposed to use model (2.26) for linked
administrative and survey data (with the assumption that akj = 0 and bkj = 1 for
all variables). They showed how to estimate this model for J = 1 and K = 3. An
interesting feature of the contamination model is that akj and bkj can be identified
without “gold standard” data (Robinson, 2016). An application of this model will
be discussed in Chapter 7 of this thesis.

2.3.4 Administrative data

The true-score measurement error model (2.2) and the designs discussed in Sec-
tion 2.3.2 were originally developed for psychological tests and later extended to
survey variables. Conceptually, the same model could be applied also to adminis-
trative variables. The interpretations of the variable of interest F , the true score T
and the random measurement error ϵ remain the same for administrative data. In
particular, the reliability and validity coefficients defined in Section 2.3.1 are useful
summary statistics of the measurement quality of administrative variables.

The interpretation of the method componentM in this context is less clear. The
measurement procedures by which administrative data are collected usually fall
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outside the influence of the researcher who uses the data (Bakker and Daas, 2012);
in fact, the researcher often has only limited knowledge about these measurement
procedures. Hence, it is usually not possible for a researcher to identify different
“methods” behind administrative variables at a more detailed level than that of the
administrative source itself. That is to say, in the context of administrative data,
each register constitutes a different method, but it is not possible to distinguish
different methods within the same register. This somewhat devalues the concept of
a “method”.

As a consequence, the role of the unique component u becomes more impor-
tant for administrative data than for survey data. In particular, the assumption of
the true-score MTMM model that u = 0 seems untenable for most administrative
variables. In fact, if the administrative source itself is taken as the method, then any
systematic effects caused by different measurement procedures for different vari-
ables within a single source will contribute to u in (2.2). Such systematic differ-
ences are likely to occur in practice, just as they also occur for different variables
in a single survey. Recall, for instance, that some variables in an administrative
source may be more important than others to the register owner.

To estimate the various components of model (2.2), multiple measurements
are needed. It is less obvious how to obtain multiple, independent measures with
administrative variables than with survey variables. The designs in Section 2.3.2 all
assume to some extent that it is possible to choose which measurement procedures
are applied to each unit in the population, that is to say, that it is possible to conduct
methodological experiments as part of the data collection procedure. With surveys
based on questionnaires, this is certainly possible in theory, although in practice
some limitations do exist in terms of costs, available resources, bounds on response
burden, etc. By contrast, methodological experiments are almost never possible
with administrative data sources.

Biemer (2004) noted that an alternative way to obtain multiple measurements
may be to link different data sources together. In particular, linking administra-
tive data and (existing) survey data can be a powerful approach to obtain multiple
measurements at virtually no additional costs and no additional response burden.
Bakker (2012) obtained linked data from one administrative data source and one
survey and applied the congeneric measures model (2.25) to estimate the indicator
validity of J = 4 variables in both data sources. With this type of application in
mind, Scholtus and Bakker (2013b) conducted a simulation study of the robustness
to minor model misspecifications of validity estimates in model (2.25) when each
variable of interest is measured by two methods.

Linking administrative data to survey data might also make it possible to apply
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the MTMM design to administrative data. As noted above, the true-score MTMM
model may be inappropriate for administrative data, but one could still use the
classical MTMM model to obtain estimates of indicator validity and reliability (as
defined under that model). Recall that at least three methods and three correlated
variables of interest are needed to identify all parameters of the MTMM model. A
direct application of the MTMM design is therefore possible if one can link (A)
an administrative data source to a survey in which at least two different methods
are used, or (B) two independent administrative data sources to a survey with a
single method, or (C) three independent administrative data sources among them-
selves, provided that at least three correlated variables of interest are measured in
all sources. Situations (B) and (C) rarely arise. Situation (A) could be achieved
in a trivial manner by conducting a new survey which is specifically designed to
evaluate the measurement quality of the administrative data, but this is unattractive
from a practical point of view. It is desirable to make use of data that are already
available as much as possible (Van Delden et al., 2014).

In practice, it may often be relatively easy to obtain three different measure-
ments of several variables of interest from three different sources: one administra-
tive data set and two existing surveys. Usually, these data would not be sufficient
to apply the original MTMM design, due to a lack of overlapping units between
the two surveys. The split-ballot MTMM design introduced by Saris et al. (2004)
could be of interest for this situation. In particular, the available data match the
two-group design in the left panel of Table 2.2 exactly, if methods M1 and M2 de-
note the two (non-overlapping) surveys and method M3 denotes the administrative
source. Unfortunately, as noted above, results on simulated data suggest that this
particular split-ballot design often leads to problems during model estimation.

If one has only one administrative data set and one linked survey (with a single
method), the MTMM design with K = 2 methods cannot be used directly as it is
not identified. In this situation, one final option might be to use the SQP software
of Saris and Gallhofer (2007) to obtain separate predictions of the reliability, va-
lidity and method parameters of the survey variables. By fixing the measurement
parameters for the survey variables in the MTMM model to their predicted values,
one could obtain an identified model which can be used to estimate the remain-
ing parameters for the administrative variables. It remains to be seen whether this
approach can yield accurate results in practice.

Finally, the RMM and quasi-simplex designs may be useful for some applica-
tions where administrative data are available over time, similar to panel surveys.
An important assumption of these designs is that the measurements at different
time points can be considered independent. This assumption may be reasonable
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for some administrative sources that use a “survey-like” data collection method.
However, as noted in Section 1.2.2, longitudinal administrative data are often gen-
erated by the (automatic or manual) registration of events. The data then remain
unchanged until a new event is registered. In this case, although it is possible (and
much less costly than for panel surveys) to obtain an administrative data set of mea-
surements at several points in time, the measurement errors at different time points
will be correlated strongly. The RMM and quasi-simplex designs are therefore in-
appropriate for administrative data of this type. In fact, even with “survey-like”
longitudinal administrative data, the assumption that the measurement errors in
these data are uncorrelated over time is often problematic, because the nature of
administrative reporting means that errors that go unnoticed will often be repeated
in the future.

In principle, it is possible to extend the quasi-simplex model to allow for corre-
lated measurement errors over time. For categorical variables, latent class models
with Markov assumptions have been used in this context; see, e.g., Langeheine
(1994), Bassi et al. (2000), Biemer (2011) and Pavlopoulos and Vermunt (2015).

2.4 Models for data editing

It is interesting to examine briefly the relation between data editing and measure-
ment error modelling. Although most data editing methods were developed heuris-
tically, by making gradual improvements based on practical experiences, in fact
some modelling assumptions about measurement errors are implicitly contained in
these methods. As noted in Section 1.2.3, all editing methods suppose that true
values exist and can be obtained in principle if measurement is done with suffi-
cient care. In particular, it is assumed that the majority of values in a data set are
observed correctly during data collection (i.e., errors are intermittent). For those
values that were not observed correctly in the initial response, it is assumed that
the true values can be obtained later by subject-matter experts.

These assumptions are not in line with the true-score error model of Sec-
tion 2.3.1, but they are in line with the contamination model of Section 2.3.3. It
is therefore not surprising that publications in the data editing literature that do
feature explicit error models are often based on contamination-like models. For
instance, Di Zio and Guarnera (2013) discussed a model-based procedure for se-
lective editing that assumes that the observed data come from a mixture of multi-
variate normal distributions.

Naus et al. (1972) introduced a simple measurement error model for survey
data that influenced the development of the Fellegi-Holt paradigm. Under this
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model, each observed variable yk has a certain probability πk of containing an er-
ror, and erroneous values are supposed to be random draws from an unspecified
distribution. If it is assumed that πk does not depend on the true value of yk and
that errors in different variables occur independently, then it can be shown that
maximum likelihood estimation of the error pattern in an observed record is ap-
proximately equivalent to minimising (2.1) with confidence weights given by

wk = − log

(
πk

1− πk

)
.

A proof of this result was first given by Liepins (1980).
Although this simple model is unlikely to hold for any real data set, it does pro-

vide some motivation for the Fellegi-Holt paradigm. In particular, the derivation in
Liepins (1980) suggests conditions under which the Fellegi-Holt-based error local-
isation problem might be expected to work well, and also provides some direction
for choosing confidence weights. In Chapter 5, we will consider an extension of
the model of Naus et al. (1972) to motivate a generalisation of the Fellegi-Holt
paradigm.

2.5 Conclusion

To conclude this review of existing work on editing and estimation of measurement
errors, we briefly describe how the contents of the remaining chapters of this thesis
build on this work. Regarding the editing approach, it was discussed in Section 2.2
that automatic editing methods could be very useful for increasing the efficiency
of editing processes, in particular for administrative data. However, as mentioned
in Section 1.3, evaluations of automatic editing in practice have shown that with
the current methodology the quality of automatically-edited data is often quite low;
therefore, automatic editing is currently applied only on a limited scale as a sup-
plement to selective manual editing. It is therefore important to develop improved
methods that will allow automatic editing to be used more widely in practice.

In this thesis, the development of improved methods for automatic editing will
be addressed in Chapters 3–5. In Chapter 3, we will focus on the automatic cor-
rection of systematic errors, by developing new algorithms that can correct two
types of generic systematic errors that are common in data for business statistics:
sign errors and rounding errors. In Chapters 4 and 5, we will focus on random er-
rors. We will develop two extensions of the Fellegi-Holt paradigm that relax some
of the assumptions of this paradigm by incorporating, respectively, soft edit rules
(Chapter 4) and complex edit operations (Chapter 5). Both extensions lead to a new
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formulation of the error localisation problem that is more flexible and therefore has
the potential to improve the quality of automatic editing.

Regarding the estimation approach, it was noted that applications of this ap-
proach in official statistics will often relate to univariate statistics such as popula-
tion totals and means. Such applications therefore require not just estimates of the
validity and reliability of an observed variable, but also of its bias in terms of the
intercept and slope parameters of the measurement error model. As noted above,
this has implications for the identification of the model. In Chapter 6, we will de-
scribe an application of structural equation modelling for administrative data on
businesses, to determine whether these data can be used for the production of eco-
nomic statistics, possibly after a correction for measurement bias. To identify the
SEM, we will use the device suggested by Sobel and Arminger (1986) of collect-
ing “gold standard” data for an audit sample (a random subsample of the original
sample). We will work out some adjustments to the estimation procedure that are
necessary to incorporate the audit sample while also accounting for a complex
sample design and non-normality of the data.

In official statistics, the editing approach is currently used with the tacit as-
sumption that any errors that remain in the edited data have a negligible influence
on published estimates. It is clear that this is not guaranteed to be the case, in par-
ticular when the editing process involves selective editing and/or automatic editing.
In Chapter 7, we will therefore check this assumption by modelling the errors in a
data set before and after editing. We will use two different models: an SEM and a
variation on the contamination model of Guarnera and Varriale (2016). As noted
in Section 2.4, the latter type of model seems more appropriate as it is more in line
with the assumptions of editing methods.

An interesting feature of the application in Chapter 7 is that it combines the two
approaches to handling measurement errors, editing and estimation. This combi-
nation of approaches could be developed further, as we will discuss in Chapter 8.
Firstly, by estimating the residual measurement error after editing, it may become
possible to correct statistical output for the effect of these errors, rather than sim-
ply making the untested assumption that this effect is negligible. Secondly, if the
editing process is followed by an estimation step that corrects for residual measure-
ment errors, it is no longer necessary to edit the data until the remaining errors have
a negligible influence on the (uncorrected) estimates and it may therefore be pos-
sible to reduce the amount of manual editing. Thus, incorporating a combination
of the editing and estimation approach in a regular statistical production process
could lead to statistical data of a higher quality at lower costs.
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Chapter 3

Algorithms for Correcting Sign
Errors and Rounding Errors in
Business Survey Data

The contents of this chapter have been published in Journal of Official Statistics as Scholtus (2011a).

That version omitted Appendix 3.A. Otherwise, the chapter is identical to the article, apart from

some minor textual corrections and adjustments. Elements of this article were also incorporated into

Chapter 2 of De Waal et al. (2011).

3.1 Introduction

It is well-known that data collected in a survey or register contain errors. In the
case of a survey, these errors may be introduced when the respondent fills in the
questionnaire or during the processing of survey forms at the statistical office. It
is important to resolve the errors by editing the data, because figures based on
erroneous data may be biased or logically inconsistent. For the structural busi-
ness statistics, all survey variables are quantitative and many (linear) relationships
between them can be formulated. Thus, a set of constraints called edit rules is
established. Two examples of edit rules are

profit = turnover − costs

and

number of employees (in persons)

≥ number of employees (in full time equivalent (fte)).

If the data in a particular record violate an edit rule, the record is found to be
inconsistent and it is deduced that some variable(s) must be in error.
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A distinction is often made between systematic errors and random errors. Ac-
cording to EDIMBUS (2007, §3.3.1), an error is systematic if it is reported consis-
tently over time by different respondents. This type of error occurs when respon-
dents consistently misunderstand a survey question, e.g., by reporting financial
amounts in Euros rather than the requested multiples of 1, 000 Euros [this exam-
ple is called a unity measure error, cf. Di Zio et al. (2005a)]. A fault in the data
processing system might also introduce systematic errors. Since it is reported con-
sistently by a number of respondents, an undiscovered systematic error can lead to
biased aggregates. Once identified, a systematic error can be corrected deductively,
because the underlying error mechanism is assumed to be known. Random errors
on the other hand do not have a structural cause. An example of a random error
occurs when a particular “1” on a particular survey form is accidentally keyed in
as a “7” during data processing.

At Statistics Netherlands, selective editing is used to clean the data collected
for structural business statistics (De Jong, 2002). This means that only records
containing (potentially) influential errors are edited manually by subject-matter
specialists, whereas the remaining records are edited automatically. For the lat-
ter step, many statistical institutes have implemented error localisation algorithms
based on a generalisation of the Fellegi-Holt paradigm (Fellegi and Holt, 1976),
which states that the smallest possible (weighted) number of variables should be
labelled erroneous such that the record can be made consistent with every edit rule.
This paradigm is based on the assumption that the data contain only random errors.

Examples of software packages for automatic editing based on the Fellegi-Holt
paradigm are: GEIS (Kovar and Whitridge, 1990) and its successor Banff (Banff
Support Team, 2003), SPEER (Winkler and Draper, 1997), DISCRETE (Winkler
and Petkunas, 1997) and AGGIES (Todaro, 1999). At Statistics Netherlands, the
software package SLICE was developed for automatic editing. SLICE also uses an
error localisation algorithm based on the Fellegi-Holt paradigm; a description of
this algorithm can be found in De Waal and Quere (2003) and De Waal (2003a).

A plausibility indicator is calculated for each record to assess whether it may
contain influential errors and should be edited manually (Hoogland, 2006). The
plausibility indicator is calibrated such that all records that receive a score above
a certain threshold are deemed suitable for automatic editing. Only the records
with the lowest scores on the plausibility indicator are edited manually. In addition
to this, the data of very large companies are always edited manually, since it is
considered impossible to construct meaningful aggregates unless this part of the
data set is error-free.

Selective editing leads to a more efficient editing process than traditional edit-
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ing (where every record is edited by hand), because part of the data stream is not
reviewed by subject-matter specialists any more. However, Fellegi-Holt based al-
gorithms for automatic error localisation are not considered suitable for editing
records that contain either influential or systematic errors. In particular, the correc-
tion of systematic errors often requires changing more variables than the Fellegi-
Holt paradigm suggests. For instance, a unity measure error affects all financial
variables on the survey form, but it leads to few violated edit rules. Furthermore,
in practice the error localisation problem becomes too complicated if many vari-
ables contain erroneous values and/or if many edit rules are violated (De Waal and
Quere, 2003). For the Netherlands’ structural business survey, because of the large
number of edit rules involved, the error localisation problem tends to be too com-
plex to solve with SLICE if more than, say, about 15 variables have to be changed.

To preserve the quality of the statistical output, only records that contain a
limited number of non-influential random errors should be edited automatically.
Ideally, the plausibility indicator filters out all records containing influential errors
or too many inconsistencies. Prior to this, several types of obvious errors can be
detected and resolved automatically in a separate step. A systematic error is called
obvious if it can be detected “easily”, i.e., by applying some basic, specific search
algorithm. Obvious errors are easy to correct, because the underlying cause of
the error is detectable. An example of such an error is the unity measure error,
which can be detected by comparing the reported amounts with reference values
(see Section 3.2).

It is useful to detect and correct obvious inconsistencies as early as possible in
the editing process, since it is a waste of resources if subject-matter specialists have
to deal with them. When obvious inconsistencies are corrected in a separate step,
before the plausibility indicator is calculated, the efficiency of the selective edit-
ing process increases because more records will be eligible for automatic editing.
Moreover, solving the error localisation problem becomes easier once obvious in-
consistencies have been removed, since the number of violated edit rules becomes
smaller.

Furthermore, since obvious inconsistencies are systematic errors, they can be
corrected more accurately by a specific, deductive algorithm than by a general
error localisation algorithm based on the Fellegi-Holt paradigm. The deductive
algorithm uses knowledge of the underlying cause of the error, so that the corrected
values are true values, assuming that the error has been detected correctly. By
contrast, the Fellegi-Holt-based algorithm does not use this knowledge, and the
values returned by this algorithm are consistent with respect to the edit rules but are
not necessarily true values. Hence, if a certain type of systematic error is expected
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to occur commonly and if a specific, trustworthy search routine is available to
detect and correct it, it makes sense to apply this routine rather than to rely on
the general algorithm used by SLICE. After all, if the error is left in the data to
be resolved by SLICE, at best the general algorithm will detect and correct the
error the same way the simple algorithm would have done, but at a much higher
computational cost.

The currently implemented editing process for the structural business statistics
at Statistics Netherlands contains a step during which three obvious systematic er-
rors are treated. Section 3.2 provides a brief description of this step. Other obvious
inconsistencies have been discovered by comparing raw and manually edited data
from past cycles of the structural business survey. This study has resulted in several
new deductive correction methods (Scholtus, 2008, 2009).

The purpose of this chapter is to present new algorithms for the detection and
correction of two types of errors. Section 3.3 deals with so-called sign errors and
interchanged revenues and costs. Section 3.4 describes a heuristic method for cor-
recting rounding errors. Rounding errors are not obvious inconsistencies in the
true sense of the word (they can be considered as random errors), but the efficiency
of the editing process is expected to increase if these errors are also treated sepa-
rately. Section 3.5 presents some results of an application of the two algorithms to
real-world data. Finally, a few concluding remarks follow in Section 3.6.

Due to item non-response, the unedited data contain a substantial number of
missing values. The algorithms described in this chapter assume that these missing
values have been temporarily replaced with zeros. This is merely a precondition
for determining which edit rules are violated and which are satisfied, and should
not be considered a full imputation. When the obvious inconsistencies have been
corrected, all placeholder zeros should be replaced by missing values again, to be
imputed by a valid method later. Clearly, this requires that placeholder zeros can
be distinguished from actually reported zeros.

3.2 Current approach at Statistics Netherlands

The currently implemented editing process for structural business statistics at Statis-
tics Netherlands contains a step in which three kinds of obvious systematic errors
are detected. These errors are treated deductively before any other correction is
made in the data of the processed survey forms.

The first of these obvious inconsistencies is the unity measure error from Sec-
tion 3.1: the amounts on the survey form are sometimes reported in Euros instead
of in 1, 000 Euros. This particular unity measure error is also referred to as a

62



3.3. Sign errors

uniform 1, 000-error. It is important to detect this error because otherwise pub-
lication figures of all financial items will be overestimated. Depending on which
auxiliary information is available, two methods are used to detect uniform 1, 000-
errors. If the respondent is present in the VAT register, the amount of turnover in
the register is compared to the reported turnover in the survey. For the other re-
spondents, the amount of reported turnover per reported number of employees (in
fte) is compared to its median in the edited data of the previous year. If a large
discrepancy is found by either method, all financial amounts reported by the re-
spondent are divided by 1, 000. This is how uniform 1, 000-errors are currently
detected at Statistics Netherlands. Different methods are suggested by Di Zio et al.
(2005a) and Al-Hamad et al. (2008).

The second obvious inconsistency occurs when a respondent adds a redundant
minus sign to a reported value. This sometimes happens with variables that have
to be subtracted, even though there already is a printed minus sign on the survey
form. As a result, the value of the variable becomes incorrectly negative after data
processing. The resulting inconsistency can be detected and corrected easily: the
reported amount is simply replaced by its absolute value.

The third and final obvious inconsistency occurs when respondents report com-
ponent items of a sum but leave the corresponding total blank. When this is de-
tected, the total value is calculated from the reported items and filled in automati-
cally.

3.3 Sign errors

3.3.1 The profit-and-loss account

The profit-and-loss account is a part of the questionnaire used for structural busi-
ness statistics where the respondent has to fill in a number of balance amounts.
These balance variables are denoted by x0, x1, . . . , xn−1. A final balance amount
xn called the pretax results is found by adding up the other balance variables. That
is, the data should conform to the following edit rule:

x0 + x1 + · · ·+ xn−1 = xn. (3.1)

Rule (3.1) is sometimes referred to as the external sum. A balance variable is
defined as the difference between a revenue item and a cost item. If these items are
also asked in the questionnaire, the following edit rule should hold:

xk,r − xk,c = xk, (3.2)
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where xk,r denotes the revenue item and xk,c the cost item. Rules of this form are
referred to as internal sums.

A statistical office may decide not to ask the revenues and costs for every bal-
ance variable in the survey, to limit the burden on respondents. To keep the no-
tation simple but sufficiently general, it is assumed that the balance variables are
arranged such that only x0, . . . , xm are split into revenues and costs, for some
m ∈ {0, 1, . . . , n− 1}. Thus, the following set of edit rules is used:

x0 = x0,r − x0,c
...

xm = xm,r − xm,c

xn = x0 + x1 + · · ·+ xn−1

(3.3)

In this notation the 0th balance variable x0 stands for operating results, and x0,r
and x0,c represent operating returns and operating costs, respectively.

3.3.2 Sign errors and interchanged revenues and costs

Table 3.1 displays the structure of the profit-and-loss account from the structural
business statistics questionnaire that was used at Statistics Netherlands until 2005.
The associated edit rules are given by (3.3), with n = 4 and m = n − 1 = 3.
Table 3.1 also displays four example records that are inconsistent. The first three
example records have been constructed for this chapter with nice “round” amounts
to improve readability, but the types of inconsistencies present were taken from
actual records from the structural business statistics of 2001. The fourth example
record contains realistic values.

In Example (a) two edit rules are violated: the external sum and the internal
sum with k = 1. In this case, the profit-and-loss account can be made fully con-
sistent with all edit rules by just changing the value of x1 from 10 to −10 (see Ta-
ble 3.2). This is the natural way to obtain a consistent profit-and-loss account here,
since any other explanation would require more variables to be changed. More-
over, it is quite conceivable that the minus sign in x1 was left out by the respondent
or “lost” during data processing.

Two internal sums are violated in Example (b), but the external sum holds. The
natural way to obtain a consistent profit-and-loss account here is by interchanging
the values of x1,r and x1,c, and also of x3,r and x3,c (see Table 3.2). By treating
the inconsistencies this way, full use is made of the amounts actually filled in by
the respondent and no imputation of synthetic values is necessary.

The two types of errors found in Examples (a) and (b) are referred to as sign
errors and interchanged revenues and costs, respectively. For the sake of brevity,
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Table 3.1: Structure of the profit-and-loss account in the structural business statistics until
2005, with four example records, (a) − (d).

Variable Full name (a) (b) (c) (d)

x0,r Operating returns 2, 100 5, 100 3, 250 5, 726
x0,c Operating costs 1, 950 4, 650 3, 550 5, 449
x0 Operating results 150 450 300 276

x1,r Financial revenues 0 0 110 17
x1,c Financial expenditure 10 130 10 26
x1 Financial result 10 130 100 10

x2,r Provisions rescinded 20 20 50 0
x2,c Provisions added 5 0 90 46
x2 Balance of provisions 15 20 40 46

x3,r Exceptional income 50 15 30 0
x3,c Exceptional expenses 10 25 10 0
x3 Exceptional result 40 10 20 0

x4 Pretax results 195 610 −140 221

the term sign error is also used to refer to both types. In an evaluation study at
Statistics Netherlands, which compared raw data to manually edited data, it was
found that a substantial number of respondents made these errors. Moreover, it
was found that these errors were often not correctly identified by SLICE and hence
resolved in a different way during automatic editing. In particular, it is very difficult
to handle interchanged revenues and costs correctly by means of the Fellegi-Holt
paradigm, because this requires changing two variables where it would actually
suffice to change one. Therefore, it seems advantageous to add a separate detection
step for sign errors at the beginning of the automatic editing process.

Sign errors and interchanged revenues and costs are closely related and should
therefore be searched for by one detection algorithm. In the remainder of this
section such an algorithm is formulated, working from the assumption that if an
inconsistent record can be made to satisfy all edit rules in (3.3) by only changing
signs of balance variables and/or interchanging revenue items and cost items, this
is indeed the way the record should be corrected.

It should be noted that operating returns (x0,r) and operating costs (x0,c) differ
from the other variables in the profit-and-loss account in the sense that they are
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also present in other edit rules, connecting them to items from other parts of the
survey. For instance, operating costs should equal the sum of total labour costs,
total machine costs, etc. If x0,r and x0,c were interchanged to suit the 0th internal
sum, other edit rules might be violated. It is therefore not allowed to interchange
x0,r and x0,c when detecting sign errors. Because of the way the questionnaire
is designed, it seems highly unlikely that any respondent would mix up these two
amounts anyway.

As stated above, a record contains a sign error if it satisfies the following two
conditions:

• at least one edit rule in (3.3) is violated;

• it is possible to satisfy (3.3) by only changing the signs of balance amounts
and/or interchanging revenue and cost items other than x0,r and x0,c.

An equivalent way of formulating this is to say that an inconsistent record contains
a sign error if the following set of equations has a solution:

x0s0 = x0,r − x0,c
x1s1 = (x1,r − x1,c) t1

...
xmsm = (xm,r − xm,c) tm
xnsn = x0s0 + x1s1 + · · ·+ xn−1sn−1

(s0, . . . , sn; t1, . . . , tm) ∈ {−1, 1}n+m+1

(3.4)

Note that in (3.4) the x’s are used as known constants rather than unknown vari-
ables. Thus, a different set of equations in (s0, . . . , sn; t1, . . . , tm) is found for
each record.

Moreover, once a solution to (3.4) has been found, it is immediately clear how
to obtain a consistent profit-and-loss account: if sj = −1 then the sign of xj must
be changed, and if tk = −1 then the values of xk,r and xk,c must be interchanged.
It is easy to see that the resulting record satisfies all edit rules (3.3). Since x0,r and
x0,c may not be interchanged, no variable t0 is present in (3.4).

Example. Consider (3.4) for Example (c) from Table 3.1:

300s0 = −300
100s1 = 100t1
40s2 = −40t2
20s3 = 20t3

−140s4 = 300s0 + 100s1 + 40s2 + 20s3
(s0, s1, s2, s3, s4; t1, t2, t3) ∈ {−1, 1}8

(3.5)
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Table 3.2: Corrected versions of the example records from Table 3.1. Changes are shown
in boldface.

Variable Full name (a) (b) (c) (d)

x0,r Operating returns 2, 100 5, 100 3, 250 5, 726
x0,c Operating costs 1, 950 4, 650 3, 550 5, 449
x0 Operating results 150 450 −300 276

x1,r Financial revenues 0 130 110 17
x1,c Financial expenditure 10 0 10 26
x1 Financial result −10 130 100 −10

x2,r Provisions rescinded 20 20 90 0
x2,c Provisions added 5 0 50 46
x2 Balance of provisions 15 20 40 −46

x3,r Exceptional income 50 25 30 0
x3,c Exceptional expenses 10 15 10 0
x3 Exceptional result 40 10 20 0

x4 Pretax results 195 610 −140 221

This system has the (unique) solution (s0 = −1, s1 = 1, s2 = 1, s3 = 1, s4 =

1; t1 = 1, t2 = −1, t3 = 1). This solution shows that the value of x0 should be
changed from 300 to −300 and that the values of x2,r and x2,c should be inter-
changed. This correction indeed yields a fully consistent profit-and-loss account
with respect to (3.3), as can be seen in Table 3.2. 2

An important question is: does system (3.4) always have a unique solution?
Scholtus (2008) derives the following sufficient condition for uniqueness: if x0 ̸=
0, xn ̸= 0, and if the equation

λ0x0 + λ1x1 + · · ·+ λn−1xn−1 = 0

does not have any solution (λ0, λ1, . . . , λn−1) ∈ {−1, 0, 1}n for which at least one
term λjxj ̸= 0, then an inconsistency in the record can be resolved by changing
signs and/or interchanging revenues and costs in at most one way. It appears that
this condition is usually satisfied; in the data examined at Statistics Netherlands,
the condition holds for over 95 per cent of all records. In the rare case that system
(3.4) has more than one solution, it makes sense to assume that most of the original
values were reported correctly by the respondent and therefore choose the solution
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with the smallest number of −1’s among sj and tk. This assumption will indeed
be made in the next subsection.

3.3.3 A binary linear programming problem

Detecting a sign error in a given record is equivalent to solving the corresponding
system (3.4). Therefore all that is needed to implement the detection of sign errors
is a systematic method to solve this system. Before addressing this point, it is
convenient to write (3.4) in matrix notation to shorten the expressions. Define the
(m+ 2)× (n+ 1)-matrix U by

U =


x0 0 · · · 0 0 · · · 0 0
0 x1 · · · 0 0 · · · 0 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · xm 0 · · · 0 0
x0 x1 · · · xm xm+1 · · · xn−1 −xn


and define the (m+ 2)× (m+ 1)-matrix V by

V =


x0,r − x0,c 0 · · · 0

0 x1,r − x1,c · · · 0
...

...
. . .

...
0 0 · · · xm,r − xm,c

0 0 · · · 0

 .

Note that the bottom row of V consists entirely of zeros. Moreover, define s =

(s0, s1, . . . , sn)
′ and t = (1, t1, . . . , tm)′. Using this notation, (3.4) can be rewrit-

ten as: 
Us−Vt = 0,

s ∈ {−1, 1}n+1 ,
t ∈ {1} × {−1, 1}m ,

(3.6)

where 0 denotes the (m+ 2)-vector of zeros.
The least sophisticated way of finding a solution to (3.6) would be to simply

try all possible vectors s and t. Since m and n are small in this situation, the
number of possibilities is not very large and this approach is actually quite feasible.
However, it is also possible to reformulate the problem as a so-called binary linear
programming problem. This has the advantage that standard software may be used
to implement the method. Moreover, it will be seen presently that this formulation
can be adapted easily to accommodate possible rounding errors present in the data.

The following binary variables are introduced to reformulate the problem:

σj =
1−sj
2 , j ∈ {0, 1, . . . , n} ,

τk = 1−tk
2 , k ∈ {1, . . . ,m} .
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Finding an optimal solution to (3.6) may be restated as follows:

minimise
∑n

j=0 σj +
∑m

k=1 τk
such that:
U (1− 2σ)−V (1− 2τ ) = 0

σ ∈ {0, 1}n+1 , τ ∈ {0} × {0, 1}m ,

(3.7)

where 1 is a vector of ones, σ = (σ0, σ1, . . . , σn)
′ and τ = (0, τ1, . . . , τm)′.

Observe that in this formulation the number of variables sj and tk that are equal
to −1 is minimised, i.e., the solution is searched for that results in the smallest
number of changes being made in the record. Obviously, if a unique solution to
(3.6) exists, then this is also the solution to (3.7). The binary linear programming
problem may be solved by applying a standard branch and bound algorithm. Since
n and m are small, very little computation time is needed to find the solution.

3.3.4 Allowing for rounding errors

It often happens that balance edit rules are violated by a very small difference. For
instance, a reported total value is just one or two units smaller or larger than the
sum of the reported item values. These inconsistencies are called rounding errors
if the absolute difference is no larger than δ units. In the examples in this chapter,
δ is chosen equal to 2. In the profit-and-loss account, rounding errors can occur in
two ways. Firstly the pretax results may differ slightly from the sum of the balance
amounts (a rounding error in the external sum), and secondly a balance amount
may just disagree with the difference between the reported revenue and cost items
(a rounding error in an internal sum).

Rounding errors often occur in conjunction with other errors. In particular, a
record might contain a sign error that is obscured by a rounding error. Column (d)
in Table 3.1 shows an example of such a record. If the method described in the
previous subsection is applied directly, the sign error will not be detected.

Fortunately, the binary linear programming problem (3.7) can be adapted to
take the possibility of rounding errors into account. This leads to the following
problem:

minimise
∑n

j=0 σj +
∑m

k=1 τk
such that:
−δ ≤ U (1− 2σ)−V (1− 2τ ) ≤ δ

σ ∈ {0, 1}n+1 , τ ∈ {0} × {0, 1}m ,

(3.8)

where δ is a vector of δ’s and the rest of the notation is obtained as before. Problem
(3.7) is obtained by taking δ = 0, i.e., by assuming that no rounding errors occur.

Example. If (3.8) is set up for Example (d) from Table 3.1, with δ = 2, the fol-
lowing solution is found: (σ0 = 0, σ1 = 1, σ2 = 1, σ3 = 0, σ4 = 0; τ1 = 0, τ2 =
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0, τ3 = 0). Recalling that σj = 1 if and only if sj = −1 (and a similar expression
for τk and tk), the sign error may be removed by changing the signs of both x1 and
x2. As can be seen in Table 3.2, this correction indeed eliminates the sign error. It
does not lead to a fully consistent profit-and-loss account, however, because there
are rounding errors left in the data. To remove these, a separate method is needed.
This problem will be discussed in Section 3.4. 2

3.3.5 Summary

The following plan summarises the correction method for sign errors and inter-
changed revenues and costs. The input consists of a record that does not satisfy
(3.3) and a choice for δ.

1. Determine the matrices U and V and set up the binary linear programming
problem (3.8).

2. Solve (3.8). If no solution is possible, then the record does not contain a sign
error. If a solution is found: continue.

3. Replace xj by −xj for every σj = 1 and interchange xk,r and xk,c for every
τk = 1.

If Step 3 is performed, the resulting record satisfies (3.3) barring possible rounding
errors.

3.4 Rounding errors

3.4.1 Introduction

It was mentioned in the previous section that very small inconsistencies with re-
spect to balance edit rules often occur, e.g., a total value is just one unit smaller
or larger than the sum of the component items. Such inconsistencies are called
rounding errors, because they may be caused by values being rounded off to mul-
tiples of 1, 000. It is not straightforward to obtain a so-called consistent rounding,
i.e., to make sure that the rounded off values have the same relation as the original
values. For example, if the terms of the sum 2.7 + 7.6 = 10.3 are rounded off to
natural numbers the ordinary way, then the additivity is destroyed: 3 + 8 ̸= 10.
Several algorithms for consistent rounding are available in the literature; see e.g.,
Salazar-González et al. (2004). Obviously, very few respondents are even aware of
these methods, let alone inclined to use them while filling in a questionnaire.
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By their nature, rounding errors have virtually no influence on aggregates, and
in this sense the choice of method to correct them is unimportant. However, as
mentioned in Section 3.1, the complexity of the automatic error localisation prob-
lem in SLICE increases rapidly as the number of violated edit rules becomes larger,
irrespective of the magnitude of the violations. Thus, a record containing many
rounding errors and few “real” errors might not be suitable for automatic editing
by means of a Fellegi-Holt-based approach and might have to be edited manually.
This is clearly a waste of resources. It is therefore advantageous to resolve all
rounding errors in the early stages of the editing process, for instance immediately
after the correction of obvious inconsistencies. Given the uninfluential nature of
rounding errors, it might seem like a good approach to not correct them at all dur-
ing automatic editing. Using SLICE, the only way to achieve this is by replacing
each balance edit rule by two inequality edit rules that bound the difference of
the total amount and its items between, say, −2 and 2. Unfortunately, this would
make the automatic editing much more computationally demanding, because the
error localisation algorithm of SLICE can handle equalities more efficiently than
inequalities (De Waal and Quere, 2003). On balance, it is actually more efficient
to handle rounding errors in a separate step.

In the remainder of this section, a heuristic method is described to resolve
rounding errors in business survey data. This method is called a heuristic method
because it does not return a solution that is “optimal” in some sense, e.g., that
the number of changed variables or the total change in values is minimised. The
rationale for using such a method is that the adaptations needed to resolve rounding
errors are very small, and that it is therefore not necessary to use a sophisticated
and potentially time-consuming search algorithm.

Although the idea behind the method is quite simple, some results from matrix
algebra are needed to explain why it works. The necessary background will be
briefly summarised in Section 3.4.2.

3.4.2 Matrix theory

Recall that Cramer’s Rule is a theorem named after the Swiss mathematician Ga-
briel Cramer (1704–1752) which states the following. Let A = (aij) be an invert-
ible p× p-matrix. The unique solution x = (x1, . . . , xp)

′ to the system Ax = b is
given by:

xk =
detBk

detA
, k = 1, . . . , p,

where Bk denotes the matrix found by replacing the kth column of A by b.
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An alternative way of formulating this is that for any invertible matrix A,

A−1 =
1

detA
A†, (3.9)

where A† denotes the adjoint matrix of A. The adjoint matrix is found by transpos-
ing the matrix of cofactors:

(
A†)

ji
= (−1)i+j detCij , where Cij is the matrix

A with the ith row and the jth column removed. For a proof of (3.9), see e.g.,
Harville (1997, Section 13.5).

A square matrix is called unimodular if its determinant is equal to 1 or −1. The
following property is an immediate consequence of Cramer’s Rule.

Property 3.1 If A is an integer-valued unimodular matrix and b is an integer-
valued vector, then the solution to the system Ax = b is also integer-valued.

A (not necessarily square) matrix for which the determinant of every square
submatrix is equal to 0, 1 or −1 is called totally unimodular. That is to say, every
square submatrix of a totally unimodular matrix is either singular or unimodular.
Clearly, in order to be totally unimodular, a matrix must have all elements equal to
0, 1 or −1. A stronger version of Property 3.1 can be proved for the submatrices
of a totally unimodular matrix.

Property 3.2 Let B be a square submatrix of a totally unimodular matrix. If B is
invertible, all elements of B−1 are in {−1, 0, 1}.

Proof. This is easily seen using the adjoint matrix B†. Since |detB| = 1 and all
cofactors are equal to 0, 1 or −1, the property follows immediately from Equation
(3.9). 2

Verifying whether a matrix is totally unimodular by directly applying the def-
inition is usually impossible – unless the matrix happens to be very small – be-
cause the number of determinants to evaluate is simply too high. Scholtus (2008)
lists some results on total unimodularity that may be used in practice to determine
whether a given matrix is totally unimodular without computing determinants.

3.4.3 The scapegoat algorithm

Basic idea

When the survey variables are denoted by the vector x = (x1, . . . , xp)
′, the balance

edit rules can be written as a linear system

Rx = a, (3.10)
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where each row of the r × p-matrix R defines an edit rule and each column cor-
responds to a survey variable. The vector a = (a1, . . . , ar)

′ contains any constant
terms that occur in the edit rules. Denoting the ith row of R by r′i, an edit rule is
violated when |r′ix − ai| > 0. The inconsistency is called a rounding error when
0 < |r′ix − ai| ≤ δ, where δ > 0 is small. Similarly, the edit rules that take the
form of a linear inequality can be written as

Qx ≥ b, (3.11)

where each edit rule is defined by a row of the q × p-matrix Q together with a
constant from b = (b1, . . . , bq)

′. Initially, it is assumed that only balance edit rules
are given.

The idea behind the heuristic method is as follows. For each record containing
rounding errors, a set of variables is selected beforehand. Next, the rounding errors
are resolved by only adjusting the values of these selected variables. Hence, the
name scapegoat algorithm seems appropriate. The name “scapegoat algorithm”
was coined by Léander Kuijvenhoven (Statistics Netherlands).

In fact, the algorithm performs the selection in such a way that exactly one
choice of values exists for the selected variables such that all rounding errors are
resolved. Different variables are selected for each record to minimise the effect of
the adaptations on aggregates.

It is assumed that the r × p-matrix R satisfies r ≤ p and rank(R) = r, that is:
the number of variables should be at least as large as the number of restrictions and
no redundant restrictions may be present. Clearly, these are very mild assumptions.
Additionally, the scapegoat algorithm becomes simpler if R is a totally unimodular
matrix. At Statistics Netherlands, it was found that matrices of balance edit rules
used for structural business statistics are always of this type. A similar observation
is made by De Waal (2002, §3.4.1).

An inconsistent record x is given, possibly containing both rounding errors
and other errors. In the first step of the scapegoat algorithm, all rows of R for
which |r′ix−ai| > δ are removed from the matrix and the associated constants are
removed from a. The resulting r0 × p-matrix is denoted by R0 and the resulting
r0-vector of constants by a0. It may happen that the record satisfies the remaining
balance edit rules R0x = a0. In that case, the algorithm stops here.

It is easy to see that if R satisfies the assumptions above, then so does R0.
Hence rank(R0) = r0 and R0 has r0 linearly independent columns. The r0 left-
most linearly independent columns may be found by putting the matrix in row
echelon form through Gaussian elimination, as described by Fraleigh and Beaure-
gard (1995, §2.2), or alternatively by performing aQR-decomposition with column

73



Chapter 3. Sign Errors and Rounding Errors

pivoting, as discussed by Golub and Van Loan (1996, §5.4). (How these methods
work is irrelevant for the present purpose.) Since the choice of scapegoat vari-
ables and hence of columns should vary between records, a random permutation of
columns is performed beforehand, yielding R̃0. The variables of x are permuted
accordingly to yield x̃.

Next, R̃0 is partitioned into two submatrices R1 and R2. The first of these is
an r0 × r0-matrix that contains the leftmost linearly independent columns of R̃0,
the second is an r0 × (p − r0)-matrix containing all other columns. The vector x̃
is also partitioned into subvectors x1 and x2, containing the variables associated
with the columns of R1 and R2, respectively. Thus

R̃0x̃ = a0 becomes (R1 R2)

(
x1

x2

)
= a0.

At this point, the variables from x1 are selected as scapegoat variables and the
variables from x2 remain fixed. Therefore the values of x2 are filled in from the
original record to obtain the following system:

R1x1 = a0 −R2x2 ≡ c, (3.12)

where c is a vector of known constants.

By construction, the square matrix R1 is of full rank and therefore invertible.
Thus (3.12) has the unique solution x̂1 = R−1

1 c. In general, this solution might
contain fractional values, whereas most business survey variables are restricted to
be integer-valued. If this is the case, a controlled rounding algorithm similar to
the one described in Salazar-González et al. (2004) can be applied to the values of
(x̂′

1,x
′
2)

′ to obtain an integer-valued solution to R0x = a0. Note however that this
is not possible without slightly changing the value of at least one variable from x2

too.

If R happens to be a totally unimodular matrix, this problem does not occur.
In that case detR1 is equal to −1 or 1, and Property 3.1 says that x̂1 is always
integer-valued. In the remainder of this chapter, it is assumed that R is indeed
totally unimodular.

An example

To illustrate the scapegoat algorithm, a small-scale example now follows. Suppose
a data set contains records of eleven variables x1, . . . , x11 that should conform to

74



3.4. Rounding errors

the following five balance edit rules:

x1 + x2 = x3
x2 = x4

x5 + x6 + x7 = x8
x3 + x8 = x9
x9 − x10 = x11

 (3.13)

These edit rules may be written as Rx = 0, with x = (x1, . . . , x11)
′ and

R =


1 1 −1 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 −1 0 0 0
0 0 1 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 1 −1 −1

 . (3.14)

Thus a = 0 here. It is easily established that rank(R) = 5. Moreover, it can be
seen that R is totally unimodular by repeatedly applying the following property:
a matrix containing only elements from {−1, 0, 1} is totally unimodular, if and
only if the submatrix found by removing all columns or rows with less than two
non-zero elements is totally unimodular [see Scholtus (2008) for a proof].

The following record is inconsistent with respect to (3.13):

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
12 4 15 4 3 1 8 11 27 41 −13

This record violates all edit rules, except for x2 = x4. In each instance, the vio-
lation is small enough to qualify as a rounding error. Thus in this example R0 is
identical to R.

A random permutation is applied to the elements of x and the columns of R.
Suppose that the permutation is given by

1 → 11, 2 → 8, 3 → 2, 4 → 5, 5 → 10, 6 → 9,
7 → 7, 8 → 1, 9 → 4, 10 → 3, 11 → 6.

This yields the following result:

R̃ =


0 −1 0 0 0 0 0 1 0 0 1
0 0 0 0 −1 0 0 1 0 0 0

−1 0 0 0 0 0 1 0 1 1 0
1 1 0 −1 0 0 0 0 0 0 0
0 0 −1 1 0 −1 0 0 0 0 0

 .

It so happens that the first five columns of R̃ are linearly independent. Thus
R1 consists of the first five columns of R̃, and R2 consists of the remaining six
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columns. The scapegoat variables are those that correspond to the columns of R1,
that is to say x8, x3, x10, x9 and x4. The original values from the record are filled
in for the non-scapegoat variables to calculate the constant vector c:

c = −R2



x11
x7
x2
x6
x5
x1

 = −


0 0 1 0 0 1
0 0 1 0 0 0
0 1 0 1 1 0
0 0 0 0 0 0

−1 0 0 0 0 0





−13
8
4
1
3
12

 =


−16
−4

−12
0

−13

 .

Thus, the following system in x1 is obtained:

R1x1 =


0 −1 0 0 0
0 0 0 0 −1

−1 0 0 0 0
1 1 0 −1 0
0 0 −1 1 0




x8
x3
x10
x9
x4

 =


−16
−4

−12
0

−13

 = c.

Solving this system yields: x̂3 = 16, x̂8 = 12, x̂9 = 28, x̂4 = 4 and x̂10 = 41.
When the original values of the variables in x1 are replaced by these new values,
the record becomes consistent with respect to (3.13):

x1 x2 x̂3 x̂4 x5 x6 x7 x̂8 x̂9 x̂10 x11
12 4 16 4 3 1 8 12 28 41 −13

Observe that in this example it was not necessary to change the value of every
scapegoat variable. In particular, x4 and x10 have retained their original values.

On the size of the adjustments

The solution vector x̂1 is constructed by the scapegoat algorithm without any ex-
plicit use of the original vector x1. Therefore, it is not completely trivial that the
adjusted values remain close to the original values, which is obviously desirable. In
order to demonstrate this property, two upper bounds on the size of the adjustments
are now derived, under the assumption that R is totally unimodular.

Recall that the maximum norm of a vector v = (v1, . . . , vp)
′ is defined as

|v|∞ = max
j=1,...,p

|vj |.

The associated matrix norm is [cf. Stoer and Bulirsch (2002, §4.4)]:

||A||∞ = max
i=1,...,m

p∑
j=1

|aij |,
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with A = (aij) any m× p-matrix. It is easily shown that

|Av|∞ ≤ ||A||∞|v|∞ (3.15)

for every m× p-matrix A and every p-vector v.
Turning to the scapegoat algorithm, it holds by construction that R1x̂1 = c.

The original vector x1 satisfies R1x1 = c∗, with c∗ ̸= c. Thus

x̂1 − x1 = R−1
1 (c− c∗) . (3.16)

It follows from (3.15) and (3.16) that

|x̂1 − x1|∞ ≤ ||R−1
1 ||∞|c− c∗|∞ ≤ r0|c− c∗|∞, (3.17)

where the last inequality is found by observing that Property 3.2 implies

||R−1
1 ||∞ = max

i=1,...,r0

r0∑
j=1

|
(
R−1

1

)
ij
| ≤ r0.

Writing x̂ = (x̂′
1,x

′
2)

′ and observing that

c− c∗ = R1x̂1 −R1x1

= R1x̂1 +R2x2 − a0 − (R1x1 +R2x2 − a0)

= R̃0x̂− a0 − (R0x− a0)

= − (R0x− a0)

it is seen that |c−c∗|∞ = |R0x−a0|∞ = δmax, where δmax ≤ δ is the magnitude
of the largest rounding error that occurs for this particular record. Plugging this
into (3.17) yields

|x̂1 − x1|∞ ≤ r0δmax. (3.18)

This upper bound on the maximum difference between elements of x̂1 and x1

shows that the solution found by the scapegoat algorithm cannot be arbitrarily far
from the original record. The fact that (3.18) is proportional to the order of R1 sug-
gests that ever larger adjustments should be expected as the number of balance edit
rules increases, which is somewhat worrying. However, in practice much smaller
adjustments than r0δmax are found. For instance, in the above example with eleven
variables the maximal absolute difference according to (3.18) equals 5, but actu-
ally no value was changed by more than one unit. Nevertheless, it is possible to
construct a pathological example for which the upper bound (3.18) becomes exact;
see Appendix 3.A.
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In practice, a more interesting view on the size of the adjustments may be
provided by the quantity

1

r0

r0∑
i=1

| (x̂1 − x1)i |

which measures the average size of the adjustments, rather than the maximum.
Starting from (3.16), it is seen that

| (x̂1 − x1)i | =

∣∣∣∣∣∣
r0∑
j=1

(
R−1

1

)
ij
(c− c∗)j

∣∣∣∣∣∣ ≤
r0∑
j=1

|
(
R−1

1

)
ij
|| (c− c∗)j |.

Using again that |c− c∗|∞ = δmax yields

1

r0

r0∑
i=1

| (x̂1 − x1)i | ≤
δmax

r0

r0∑
i=1

r0∑
j=1

|
(
R−1

1

)
ij
| ≡ γ(R1)δmax, (3.19)

where γ(R1) =
1
r0

∑r0
i=1

∑r0
j=1 |

(
R−1

1

)
ij
|.

This upper bound on the average adjustment size can be evaluated before the
scapegoat algorithm is applied to an actual data set. Namely, suppose that a set of
balance edit rules (3.10) is given. Restricting oneself to the case r0 = r, γ(R1) can
be computed for various invertible r× r-submatrices of R to assess the magnitude
of the upper bound in (3.19). It can be shown [see Scholtus (2008)] that there exist
exactly det(RR′) of these submatrices. In practice, this number is very large and it
is infeasible to compute γ(R1) for all matrices R1. In that case, a random sample
of reasonable size can be taken, by repeatedly performing the part of the scapegoat
algorithm that constructs R1.

Example. For the 5 × 11-matrix from the above example, det(RR′) = 121, so
R has 121 invertible 5 × 5-submatrices. Since this number is not too large, it is
possible to evaluate γ(R1) for all these matrices. The mean value of γ(R1) turns
out to be 1.68, with a standard deviation of 0.39. Since δmax = 1 in this example,
according to (3.19) the average adjustment size is bounded on average by 1.68. 2

Section 3.4.4 examines the adjustments in a real-world example. These turn
out to be quite small.

Critical variables

In addition to balance edit rules, business survey variables usually have to satisfy
a large number of edit rules that take the form of linear inequalities. For instance,
it is very common that most variables are restricted to be nonnegative. The scape-
goat algorithm as described above does not take this into account. A nonnegative
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variable might therefore be changed by the algorithm from 0 to −1, resulting in a
new violation of an edit rule. The present section extends the algorithm to prevent
this.

Suppose that in addition to the balance edit rules (3.10), the data also have to
satisfy the inequalities (3.11). For a given record, a variable will be called critical
if it occurs in an inequality that (almost) holds with exact equality when the current
values of the survey variables are filled in:

xj is a critical variable iff 0 ≤ q′
ix− bi ≤ ϵi for some i with qij ̸= 0, (3.20)

where q′
i denotes the ith row of Q and ϵi marks the margin chosen for the ith

restriction. As a particular case, xj is called critical if it must be non-negative
and currently has a value between 0 and ϵi(j), with i(j) the index of the row in Q

corresponding to the nonnegativity constraint for xj . To prevent the violation of
edit rules in (3.11), no critical variable should be selected for change during the
execution of the scapegoat algorithm.

A way to achieve this works as follows. Rather than randomly permuting all
variables (and all columns of R0), two separate permutations should be performed
for the noncritical and the critical variables. The permuted columns associated with
the noncritical variables are then placed to the left of the columns associated with
the critical variables. This ensures that linearly independent columns are found
among those that are associated with noncritical variables, provided the record
contains a sufficient number of noncritical variables. In practice, this is typically
the case, because the number of survey variables is much larger than the number
of balance edit rules.

If a record contains many critical variables, some of these might still be selected
as scapegoat variables. This is not necessarily a problem, because usually not
all scapegoat variables are changed by the algorithm. This is, in fact, the reason
why the critical variables are also randomly permuted: it is unimportant whether a
solution to (3.12) contains critical variables, provided that no inequality edit rules
are violated as a result. It is therefore sufficient to build in a check at the end of the
algorithm that rejects the solution if a new violation of an edit rule from (3.11) is
detected. If this does happen, it seems advantageous to let the record be processed
again, because a different permutation of columns may yield a feasible solution.
To prevent the algorithm from getting stuck, the number of attempts should be
maximised by a preset constant K. If no feasible solution has been found after K
attempts, the record remains untreated.

Good values of ϵi and K have to be determined in practice. However, not too
much effort should be put into this, because these parameters only affect a limited
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number of records. In the real-world example to be discussed in Section 3.4.4,
only a handful of infeasible solutions were found before the improvements of the
current section were included in the algorithm.

Exceptional variables

In practice, the data may contain some variables that should not be changed by the
scapegoat algorithm at all. An example of such a variable in the structural business
statistics is number of employees. This variable occurs in a balance edit rule that is
often inconsistent because of a very small violation, but this violation cannot be the
result of inconsistent rounding; this variable is asked as a number, not as a multiple
of 1, 000 Euros. Moreover, the impact of changing the number of employees to suit
the balance edit rule can be considerable, particularly for very small companies.
Therefore, at this stage it seems preferable to leave the inconsistency as it is, to be
resolved later by either a subject-matter specialist or SLICE.

This can be achieved by removing the balance edit rules concerning these ex-
ceptional variables from R. The variables should not be removed from x, however,
as they may also occur in edit rules in (3.11). (For instance, the number of employ-
ees times a constant is used to maximise the total labour costs.) The values of
the exceptional variables therefore play a role in determining the critical variables.
Note that it is not necessary to remove the exceptional variables from x anyway,
because the columns that correspond with these variables contain only zeros in the
new version of R.

Summary

The following plan summarises the scapegoat algorithm. The input consists of an
inconsistent record x with p variables, a set of r balance edit rules Rx = a, a
set of q inequalities Qx ≥ b and parameters δ, ϵi (i = 1, . . . , q) and K. Edit
rules concerning exceptional variables (as defined above) have been removed from
Rx = a beforehand.

1. Remove all edit rules for which |r′ix − ai| > δ. The remaining system is
denoted as R0x = a0. The number of rows in R0 is called r0. If R0x = a0

holds: stop. Otherwise: determine the critical variables according to (3.20).

2. (a) Perform random permutations of the critical and noncritical variables
separately. Then permute the corresponding columns of R0 the same
way. Put the noncritical variables and their columns before the critical
variables and their columns.
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(b) Determine the r0 leftmost linearly independent columns in the per-
muted matrix R̃0. Together, these columns are a unimodular matrix R1

and the associated variables form a vector x1 of scapegoat variables.
The remaining columns are a matrix R2 and the associated variables
form a vector x2.

(c) Fix the values of x2 from the record and compute c = a0 −R2x2.

3. Solve the system R1x1 = c.

4. Replace the values of x1 by the solution just found. If the resulting record
does not violate any other edit rule from Qx ≥ b, the algorithm outputs the
adjusted record and terminates. Otherwise, return to step 2a, unless this has
been the Kth attempt. In that case, the record is not adjusted.

In this description, it is assumed that R is totally unimodular.

3.4.4 A real-world application

In Section 3.5, results will be discussed of an application of the two algorithms
from this study to a large data set from the Netherlands’ structural business statis-
tics. These results focus on the impact of the algorithms on the efficiency of the
editing process. In the current subsection some earlier test results are presented
that focus more on technical aspects of the scapegoat algorithm.

The scapegoat algorithm has been tested using data from the wholesale struc-
tural business statistics of 2001. There are 4, 725 records containing 97 variables
each. These variables should conform to a set of 28 balance edit rules and 120 in-
equalities, of which 92 represent nonnegativity constraints. After exclusion of edit
rules that affect exceptional variables, 26 balance edit rules remain. The resulting
26 × 97-matrix R is totally unimodular, as can be determined very quickly using
the method of removing columns and rows mentioned above. Note that it would
be practically impossible to determine whether a matrix of this size is totally uni-
modular just by computing all the relevant determinants.

An implementation of the algorithm in S-Plus was used to treat the data. The
parameters used were: δ = 2, ϵi = 2 (i = 1, . . . , 120) and K = 10. The total
computation time on an ordinary desktop PC was less than three minutes.

Table 3.3 summarises the results of applying the scapegoat algorithm. No new
violations of inequalities were found. In fact, the adjusted data happen to satisfy
four additional inequalities.

According to (3.18) the size of the adjustments made by the algorithm is the-
oretically bounded by 26 × 2 = 52, which is rather high. A random sample of
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Table 3.3: Results of applying the scapegoat algorithm to the wholesale data.

Number of records 4,725
Number of variables per record 97
Number of adjusted records 3,176
Number of adjusted variables 13,531
Number of violated edit rules (before) 34,379

Balance edit rules 26,791
Inequalities 7,588

Number of violated edit rules (after) 23,054
Balance edit rules 15,470
Inequalities 7,584

10, 000 invertible 26 × 26-submatrices of R was drawn to evaluate (3.19). The
sample mean of γ(R1) is 1.89, with a standard deviation of 0.27. Thus, the aver-
age adjustment size is bounded on average by 1.89× 2 ≈ 3.8. Note that this value
of γ(R1) is only marginally higher than the one obtained for the much smaller
restriction matrix from the example with eleven variables given above.

Table 3.4 displays the adjustment sizes that were actually found for the whole-
sale data. These turn out to be very reasonable.

Table 3.4: Distribution of the adjustments (in absolute value).

Magnitude Frequency
1 11,953
2 1,426
3 134
4 12
5 4
6 2

3.5 Application to the Netherlands’ Structural Business
Statistics of 2007

The algorithms from Sections 3.3 and 3.4 have been applied in an experiment using
data from the Netherlands’ structural business statistics of 2007. The data were
collected by Statistics Netherlands from businesses in various sectors, including
wholesale, construction and audiovisual services. The algorithms were run using
the original, unedited data.
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Table 3.5: Structure of the profit-and-loss account in the structural business statistics sur-
vey of 2007, with an example of interchanged revenues and costs.

Variable Full name Original data Corrected data

x0,r Operating returns 49, 110 49, 110
x0,c Operating costs 46, 550 46, 550
x0 Operating results 2, 560 2, 560

x1,r Provisions rescinded 340 0
x1,c Provisions added 0 340
x1 Balance of provisions −340 −340

x2 Book profit/loss −90 −90

x3 Financial result 30 30

x4 Exceptional result 0 0

x5 Pretax results 2, 160 2, 160

Table 3.5 displays the structure of the profit-and-loss account in the structural
business survey that was used in 2007. This differs from the examples in Sec-
tion 3.3 because the questionnaire was redesigned after 2005. The associated edit
rules are given by (3.3), with n = 5 and m = 1.

The results of applying the algorithm that corrects sign errors and interchanged
revenues and costs are displayed in Table 3.6. As can be seen, the fraction of profit-
and-loss accounts requiring editing is low: almost 90 per cent of the accounts are
reported without error. This can be explained by the fact that in 2007 the majority
of businesses reported by electronic questionnaire. Some of the edit rules were
built into this questionnaire, so that respondents received a warning message if the
reported amounts were inconsistent. In this way, many errors that would occur on
a paper questionnaire could be avoided during electronic data collection (Giesen,
2007).

On the other hand, among the profit-and-loss accounts that do require editing,
the fraction of accounts containing sign errors is substantial: about one in five. This
means that, as far as the profit-and-loss account is concerned, using the algorithm
of Section 3.3 substantially reduces the amount of work remaining for either man-
ual editing or automatic editing by SLICE. It should also be mentioned that the
majority of errors corrected by the algorithm were in fact interchanged revenues
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Table 3.6: Results of applying the correction algorithm for sign errors to the 2007 data.

Total number of profit-and-loss accounts 17, 258
Without inconsistencies 15, 465 (89.6%)
With inconsistencies 1, 793 (10.4%)

Corrected by the algorithm 392 (21.9%)

and costs. As noted in Section 3.3, this type of error is difficult to handle using an
automatic editing method based on the Fellegi-Holt paradigm.

The scapegoat algorithm was applied to the data using the same parameter set-
tings as in the real-world application of Section 3.4.4. The results are displayed in
Table 3.7. Please note that the total number of records and the number of records
with/without inconsistencies are not comparable to the corresponding numbers in
Table 3.6, because both records with an empty profit-and-loss account and incon-
sistencies outside the profit-and-loss account are not counted in Table 3.6.

Table 3.7: Results of applying the scapegoat algorithm to the 2007 data.

Total number of records 17, 297
Without inconsistencies 11, 183 (64.6%)
With inconsistencies 6, 114 (35.4%)

Corrected by the algorithm 1, 295 (21.2%)
Number of violated balance edit rules (before) 11, 584
Number of violated balance edit rules (after) 10, 113
Number of resolved violations 1, 471 (12.7%)

Again, the large percentage of records without inconsistencies is due to the
use of electronic data collection. This can be seen from the marked difference
between the relative number of inconsistencies in the survey data of 2001 (shown
in Table 3.3) and 2007 (shown in Table 3.7). In 2001, all data collection was still
done through paper questionnaires.

Of the records that do contain inconsistencies, about one in five contains at
least one rounding error. Moreover, the scapegoat algorithm succeeds in resolving
1, 471 of the 11, 584 violations of balance edits in the original data set, i.e., about
one in eight. This entails a substantial reduction of the amount of editing that
remains to be done either manually or automatically by SLICE.
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The figures in Table 3.7 were obtained by applying the scapegoat algorithm di-
rectly to the unedited data. In practice, it would be better to first correct sign errors
and then rounding errors, because an application of the algorithm from Section 3.3
may reveal “hidden” rounding errors; cf. Example (d) in Tables 3.1 and 3.2.

3.6 Conclusion

The main purpose of this study has been to discuss the use of deductive methods
for correcting obvious inconsistencies in business survey data, i.e., inconsistencies
where the underlying error mechanism can be recognised easily. In particular,
algorithms have been described that detect and correct two types of inconsistencies
that occur in data collected for the Netherlands’ structural business statistics: sign
errors and rounding errors. Other errors are discussed by Scholtus (2008, 2009).

Deductive algorithms are intended to be applied at the beginning of the data
editing process, before manual editing and regular automatic editing with SLICE
take place. In this way, the efficiency of the editing process is expected to increase,
because more records will be eligible for automatic editing. In particular, the pres-
ence of obvious errors and rounding errors may cause a record to be submitted to
manual editing, because the automatic error localisation problem is too difficult to
solve, when in fact the record can be handled automatically by SLICE once the
obvious errors have been removed. Moreover, in many cases the use of a deductive
algorithm for obvious errors also increases the quality of the edited data, because
systematic errors are often handled incorrectly by SLICE. This is for example true
for sign errors.

Often, the presence of errors with a structural cause in survey data signifies that
many respondents find it difficult to answer correctly because of a certain aspect
of the questionnaire design. An alternative way to handle systematic errors is,
therefore, to try to prevent them during data collection, e.g., by improving the
wording of questions or the design of answer boxes, or by adding explanatory
notes, or – in the case of electronic data collection – by means of warning messages.
If this approach succeeds in removing the underlying cause of the systematic error,
then the need for a deductive correction algorithm vanishes.

Nevertheless, in practice, deductive correction methods can still play an im-
portant part in the editing process. Firstly, it is not always possible to prevent
systematic errors through an improved form of data collection. For instance, unity
measure errors have been observed for many years in data collected by statistical
offices but, so far, no conclusive method has been found to stop respondents from
making this type of error. Secondly, changes in the questionnaire design are costly,
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because the new questionnaire has to be extensively tested, and they can adversely
influence the comparability of statistics over time. Hence, they should not be im-
plemented too often. By contrast, implementing a deductive correction algorithm
is cheap and straightforward. If a new systematic error is discovered in the data, it
can therefore be advantageous to correct this error deductively at first, until a major
revision of the data collection strategy is due.

The algorithms for correcting sign errors and rounding errors described in this
chapter have been implemented as part of the R package deducorrect, which is
available for download from the Comprehensive R Archive Network (http://cran.r-
project.org). See Van der Loo et al. (2011) for more details.

Appendix 3.A A pathological example

The upper bound (3.18) on the size of the maximal adjustment made by the scape-
goat algorithm can be achieved exactly for a particular set of balance edit rules in
combination with a particular input record. Scholtus (2008) provided an example
for the case δ = 2 which is generalised here to work for any value of δ.

Let the balance edit rules be given by Rx = 0, with R the following r×(r+1)-
matrix (for some r ≥ 3):

R =



1 1 1 · · · 1 1 0
0 1 0 · · · 0 0 1
0 0 1 · · · 0 0 1
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 1
0 0 0 · · · 0 1 −1


.

Let the inconsistent record be

x =



−(r − 3)C − (2r − 3)δ
C + 2δ

...
C + 2δ
−C

−C − δ


,

where C may be any constant. Note that Rx = (−δ, δ, . . . , δ)′, so all edit rules are
violated and all violations qualify as rounding errors. For simplicity, the example
is constructed with r0 = r and δmax = δ.

If x1, x2, . . . , xr are chosen as scapegoat variables, the matrix R1 consists of
the first r columns of R. Then c = −R2xr+1 = (0, C + δ, . . . , C + δ,−C − δ)′
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and it is easy to see that

R−1
1 c =


1 −1 −1 · · · −1
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




0

C + δ
...

C + δ
−C − δ



=


−(r − 3)(C + δ)

C + δ
...

C + δ
−C − δ

 .

The adjusted record is therefore

x̂ =



−(r − 3)(C + δ)
C + δ

...
C + δ
−C − δ
−C − δ


which, as the reader may verify, indeed satisfies all edit rules. Note that

x̂1 − x1 = −(r − 3)(C + δ) + (r − 3)C + (2r − 3)δ = rδ,

which is equal to the upper bound given by (3.18).
It is worth noting that even in this contrived example most adjustments are quite

small: apart from x1, no scapegoat variable is adjusted by more than δ units.
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Chapter 4

Automatic Editing with Hard and
Soft Edits

The contents of this chapter have been published in Survey Methodology as Scholtus (2013). That

version omitted the last paragraph of Section 4.4.1 and Footnote 1. Otherwise, the chapter is identical

to the article, apart from some minor textual corrections and adjustments.

4.1 Introduction

An important part of every statistical process is data editing, i.e., detecting and
correcting errors as well as missing values in the collected data. National statistical
institutes have traditionally relied on manual editing, where the data are checked
and, if necessary, adjusted by subject-matter experts. Unfortunately, this approach
can be very time-consuming and expensive. Alternative methods have therefore
been developed to increase the efficiency of the editing process, such as selective
editing and automatic editing. This chapter focuses on the latter approach. We
refer to De Waal et al. (2011) and their references for a discussion of selective
editing and other forms of statistical data editing.

The goal of automatic editing is to accurately detect and correct errors as well
as missing values in a data file in a fully automated manner, i.e., without human
intervention. Provided that automatic editing leads to data of sufficient quality, it
can be used as a partial alternative to manual editing. In practice, automatic editing
implies that the data are made consistent with respect to a set of constraints: the
so-called edits. Examples of edits include:

Profit = Total Turnover − Total Costs; (4.1)

and
Profit ≤ 0.6× Total Turnover. (4.2)
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Most automatic editing methods proceed by solving two separate problems:
first the error localisation problem, i.e., determining which variables are erroneous
or missing, and subsequently the consistent imputation problem, i.e., determining
new values for these variables that satisfy all the edits. The present chapter focuses
on the error localisation problem.

With respect to the two examples of edits given above, it is interesting to note
the conceptual difference that exists between them. Edit (4.1) is an example of an
edit that has to hold by definition, so that every combination of values that fails this
edit necessarily contains an error. Edits of this type are known as hard edits, fatal
edits, or logical edits. Edit (4.2), on the other hand, is an example of an edit that
identifies combinations of values that are implausible but not necessarily incorrect.
In this example, records for which Profit is larger than 60% of Total Turnover
are considered suspicious. However, it is conceivable that such a combination of
values is occasionally correct. Edits of this type, which do not identify errors with
certainty, are known as soft edits or query edits.

An important limitation of existing algorithms for automatic editing is that they
treat all edits as hard edits. That is to say, a failed edit is always attributed to an
error in the data. In manual editing, however, subject-matter specialists also make
extensive use of soft edits. During automatic editing, these soft edits are either not
used at all, or else interpreted as hard edits. Both solutions are unsatisfactory: in the
first case some errors may be missed during automatic editing, and in the second
case some correct values may be wrongfully identified as erroneous. In fact, the
inability of automatic editing methods to handle soft edits partly explains why in
practice many differences are found between manually edited and automatically
edited data.

The object of this chapter is to present a new formulation of the automatic
error localisation problem which can distinguish between hard edits and soft edits.
In addition, the chapter shows how the error localisation algorithm of SLICE – the
software package for automatic editing developed at Statistics Netherlands – can
be adapted to solve this new error localisation problem.

The remainder of this chapter is organised as follows. Section 4.2 provides
a brief summary of existing methods for solving the error localisation problem.
A distinction between hard and soft edits is introduced in the error localisation
problem in Section 4.3. Section 4.4 extends the theory behind the algorithm of
SLICE to the case that not all edits have to be satisfied. Based on these theoretical
results, an algorithm that solves the error localisation problem for hard and soft
edits is outlined in Section 4.5. In Section 4.6, the new algorithm is illustrated
by means of a small example. Section 4.7 mentions the first experiences with a
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practical implementation of the new algorithm. Finally, some concluding remarks
follow in Section 4.8.

4.2 Background

4.2.1 Edits

The problem to be discussed in this chapter entails, in its most general form, the
detection of erroneous and missing values in a record containing both categorical
variables (v1, . . . , vm) and numerical variables (x1, . . . , xp). These variables are
supposed to satisfy a set of restrictions (edits), each of which can be written in one
of the following forms:

ψk : IF (v1, . . . , vm) ∈ F k
1 × · · · × F k

m (4.3)

THEN (x1, . . . , xp) ∈ {ak1x1 + · · ·+ akpxp + bk ≥ 0}

or

ψk : IF (v1, . . . , vm) ∈ F k
1 × · · · × F k

m (4.4)

THEN (x1, . . . , xp) ∈ {ak1x1 + · · ·+ akpxp + bk = 0} .

In these expressions, F k
j is a subset of Dj , the domain of observed values for the

categorical variable vj , and akj and bk are known numerical constants. The index
k is used to number the edits. Note that Dj is assumed to contain all values of vj
that may be encountered in practice; this includes erroneous values. To simplify
matters, we restrict the problem to edits having linear numerical conditions. This
class of edits turns out to be sufficiently powerful for most practical applications
[cf. De Waal (2005)].

A record (v01, . . . , v
0
m, x

0
1, . . . , x

0
p) is said to fail an edit if the categorical IF-

condition is true (i.e., v0j ∈ F k
j for all j = 1, . . . ,m), but the numerical THEN-

condition is false (i.e., either ak1x01 + · · · + akpx
0
p + bk < 0 or ak1x01 + · · · +

akpx
0
p + bk ̸= 0, depending on the form of the edit). Otherwise, we say that the

edit is satisfied by that record. It should be noted that an edit is always satisfied by
any record for which the categorical IF-condition is false, regardless of the status
of the numerical THEN-condition. A record is called consistent if it satisfies every
edit.

A categorical variable vj is said to be involved in an edit if and only ifF k
j ̸= Dj ,

since any edit with F k
j = Dj is failed or satisfied regardless of the value of vj .

Similarly, a numerical variable xj is said to be involved in an edit if and only if
akj ̸= 0. We may assume that F k

j ̸= ∅, where ∅ denotes the empty set. Clearly, a
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degenerate edit with F k
j = ∅ can be discarded with no loss of information, since it

is never failed. The same holds for any edit with a numerical THEN-condition that
is always true.

Two important special cases of (4.3) and (4.4) are edits that involve only cat-
egorical or only numerical variables. A purely categorical edit has the following
form:

ψk : IF (v1, . . . , vm) ∈ F k
1 × · · · × F k

m THEN ∅. (4.5)

Edit (4.5) is failed by each record for which the categorical condition is true. A
purely numerical edit can be written as

ψk : (x1, . . . , xp) ∈ {ak1x1 + · · ·+ akpxp + bk ≥ 0} (4.6)

or
ψk : (x1, . . . , xp) ∈ {ak1x1 + · · ·+ akpxp + bk = 0} . (4.7)

Edits (4.6) and (4.7) are failed by each record for which the numerical conditions
are false.

Edits (4.1) and (4.2) above are examples of purely numerical edits. A simple
example of a purely categorical edit is:

IF (Age, Marital Status) ∈ {“ < 16”} × {“Married”} THEN ∅.

This edit states that persons aged less than 16 years cannot be married. Finally, an
example of a mixed edit is:

IF Age ∈ {“ < 12”} THEN Income = 0.

According to this edit, persons aged less than 12 years do not have a positive in-
come.

4.2.2 The error localisation problem

For a given record (v01, . . . , v
0
m, x

0
1, . . . , x

0
p) and a collection of edits, it is straight-

forward to verify which values in the record are missing and whether any of the
edits are failed. However, given that some of the edits are failed, solving the error
localisation problem is much less straightforward. On the one hand, most edits
involve more than one variable, and on the other hand, most variables are involved
in more than one edit.

In order to solve the error localisation problem automatically, one has to adopt
a formal strategy for finding erroneous values. The most commonly-used strategy
is based on the paradigm of Fellegi and Holt (1976): make the record consistent
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by changing the smallest possible number of original values. Other strategies have
also been proposed; for instance, Little and Smith (1987) suggested a criterion
based on outlier detection (without edits) and Casado Valero et al. (1996) formu-
lated error localisation as a quadratic minimisation problem. We shall restrict at-
tention to the Fellegi-Holt paradigm here, because of its frequent use in official
statistics.

The original Fellegi-Holt paradigm is easily generalised to allow a distinction
between a priori suspicious and less suspicious variables. To this end, one asso-
ciates a confidence weight to each variable. According to the generalised Fellegi-
Holt paradigm, one should search for a subset of the variables which (i) can be
imputed in such a way that the imputed record satisfies all edits, and (ii) minimises
the following target function:

DFH =

m∑
j=1

wC
j y

C
j +

p∑
j=1

wN
j y

N
j . (4.8)

Here, wC
j and wN

j denote the confidence weights of the categorical and numerical
variables, respectively. The binary target variables yCj and yNj describe the struc-
ture of the solution: yCj = 1 if vj is to be imputed and yCj = 0 otherwise, and
similarly yNj = 1 if xj is to be imputed and yNj = 0 otherwise. Since variables
with missing values have to be imputed with certainty, we set yCj = 1 or yNj = 1

when v0j or x0j is missing.
Fellegi and Holt (1976) also presented a method for solving the error localisa-

tion problem under this paradigm. This method first derives a well-defined set of
logically implied edits from the original set of edits, to obtain a so-called complete
set of edits. Next, the error localisation problem may be formulated as a straight-
forward set-covering problem for any record (Fellegi and Holt, 1976; Boskovitz
et al., 2005). Unfortunately, especially for numerical data the complete set of edits
can be extremely large in practice, so the method of Fellegi and Holt is not always
computationally feasible.

Many alternative algorithms have been developed for error localisation accord-
ing to the Fellegi-Holt paradigm. Besides improvements on Fellegi and Holt’s
original method (Garfinkel et al., 1986; Winkler, 1995), the list includes formula-
tions based on vertex generation (Sande, 1978; Kovar and Whitridge, 1990; Todaro,
1999; De Waal, 2003c), cutting planes (Garfinkel et al., 1986, 1988; Ragsdale and
McKeown, 1996), and mixed integer (Schaffer, 1987; Riera-Ledesma and Salazar-
González, 2003) and integer programming (Bruni, 2004, 2005); see also De Waal
et al. (2011) for an overview. Here, we shall focus on a branch-and-bound algo-
rithm due to De Waal and Quere (2003) which, in contrast to some of the above

93



Chapter 4. Automatic Editing with Hard and Soft Edits

approaches, can handle a mix of categorical and numerical data. This algorithm has
been implemented in the software package SLICE at Statistics Netherlands and has
been found to be computationally feasible in practice.

4.2.3 The branch-and-bound algorithm of SLICE

A detailed description of the error localisation algorithm implemented in SLICE
can be found in De Waal and Quere (2003), De Waal (2003b), and De Waal
et al. (2011). Here, we only mention those aspects of the algorithm that we shall
need later. For a general introduction to branch-and-bound algorithms, see e.g.,
Nemhauser and Wolsey (1988).

For each record, the SLICE algorithm sets up a binary tree, as illustrated in
Figure 4.1. In the root node of the tree, we start with the original set of edits and
we select one of the variables. From the root node, two branches are added to the
tree. In the first branch, the original value of the selected variable in the record
is assumed to be correct, and in the second branch this value is assumed to be
erroneous. Both assumptions correspond with a transformation of the set of edits,
to be outlined below, after which the selected variable is no longer involved in the
edits: the selected variable has been treated. Next, one of the remaining variables
is selected and the operation is repeated.

Figure 4.1: Illustration of the branch-and-bound algorithm as a binary tree.

Once all variables have been treated, the algorithm reaches an end node of
the tree. It is seen that, together, the end nodes of the binary tree enumerate all
possible choices of erroneous subsets of variables. The transformed set of edits
corresponding to an end node does not involve any variables, so it must either be
empty or consist of elementary relations such as “1 ≥ 0” (a tautology) and “−1 ≥
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0” (a self-contradicting statement). As will be discussed below, it is possible to
satisfy the original edits by only imputing the variables that have been considered
erroneous in the branch leading to an end node, if and only if the transformed set
of edits for that end node contains no self-contradicting statements. Using this
property, all feasible solutions to the error localisation problem may be identified.
Moreover, since we are only interested in feasible solutions that minimise target
function (4.8), a branch of the tree may be pruned as soon as we find that it only
leads to end nodes corresponding with infeasible or suboptimal solutions.

We will now outline the transformations of the set of edits that occur, depending
on whether a variable is assumed to be correct or erroneous. A variable that is
assumed to be correct is removed from the edits by simply substituting the original
value from the record in the edits. This is called fixing a variable to its original
value. A variable that is assumed to be erroneous is removed from the edits by a
more complex operation, called eliminating a variable from the edits. Numerical
variables and categorical variables are eliminated by two different but equivalent
methods.

To eliminate a numerical variable, say xg, from a set of edits having the general
forms (4.3) and (4.4), we generate logically implied edits by considering all pairs
of edits ψs and ψt that involve xg. We first check whether F s

j ∩ F t
j ̸= ∅ for all

j = 1, . . . ,m; if any of these intersections yields the empty set, then the pair ψs

and ψt does not generate an implied edit. If the numerical THEN-condition of
one of the edits, say ψs, is an equality, then this equality may be solved for xg. By
substituting the resulting expression for xg in the THEN-condition of ψt, we obtain
the numerical THEN-condition of the implied edit. The categorical IF-condition
of the implied edit is found by taking the non-empty intersections F ∗

j = F s
j ∩ F t

j

for j = 1, . . . ,m.
If the numerical THEN-conditions of ψs and ψt are both inequalities, the al-

gorithm uses a technique called Fourier-Motzkin elimination [see e.g., Williams
(1986)] to generate an implied edit. A pair of edits is relevant for this elimination
method only if the coefficients of xg have opposite signs, so we may assume with-
out loss of generality that asg < 0 and atg > 0. The implied edit generated from
ψs and ψt may then be written as [cf. De Waal and Quere (2003)]:

ψ∗ : IF (v1, . . . , vm) ∈ F ∗
1 × · · · × F ∗

m (4.9)

THEN (x1, . . . , xp) ∈
{
a∗1x1 + · · ·+ a∗pxp + b∗ ≥ 0

}
with a∗j = atgasj − asgatj , b∗ = atgbs − asgbt, and F ∗

j = F s
j ∩ F t

j as above. This
edit does not involve xg, since a∗g = 0. In this manner, implied edits are generated
by considering all pairs of edits that involve xg. These edits are added to the set of
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original edits that do not involve xg, to find the transformed set of edits obtained
by eliminating xg.

For the elimination of categorical variables, De Waal and Quere (2003) make
the simplifying assumption that these variables are only selected when all numeri-
cal variables have been treated. This assumption implies that categorical variables
are always eliminated from purely categorical edits of the form (4.5). To eliminate
a categorical variable, say vg, from a set of edits of the form (4.5), a technique is
used that was first described by Fellegi and Holt (1976).

Consider all minimal sets of edits T with the following properties:

F ∗
g (T ) =

∪
k∈T

F k
g = Dg (4.10)

and

F ∗
j (T ) =

∩
k∈T

F k
j ̸= ∅, for j = 1, . . . , g − 1, g + 1, . . . ,m. (4.11)

Here, by “minimal” we mean that property (4.10) does not hold for any set T ′ ⊂ T .
Each of these minimal sets T generates an implied edit:

IF (v1, . . . , vm) ∈ F ∗
1 (T )× · · · × F ∗

m(T ) THEN ∅, (4.12)

which does not involve vg because of property (4.10). These implied edits are
added to the set of original edits that do not involve vg, to find the transformed set
of edits obtained by eliminating vg.

It should be clear that the computational work of the algorithm lies mainly
in the elimination steps. In particular, it is known that the number of implied edits
under Fourier-Motzkin elimination may be exponential in the number of eliminated
variables (Schrijver, 1986).

A fundamental property of both elimination techniques, for numerical and cat-
egorical variables, is exhibited by the following result. Consider a system of im-
plied edits Ψ1 obtained by eliminating xg or vg from a system of edits Ψ0. Then
the original values of the untreated variables satisfy all edits in Ψ1, if and only if
there exists a value for xg or vg that, together with these original values, satisfies
all edits in Ψ0. For a proof, see Theorem 8.1 in De Waal (2003b) or Theorem
4.3 in De Waal et al. (2011). The above-mentioned correspondence between end
nodes without self-contradicting elementary relations and feasible solutions to the
error localisation problem follows from a repeated application of this fundamental
property.
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4.3 An error localisation problem with hard and soft edits

In the formulation of the error localisation problem given in Section 4.2.2, which
is based on the Fellegi-Holt paradigm, it is tacitly assumed that all edits are hard
edits. Consequently, the only subsets of the variables that are considered feasi-
ble solutions to this problem are those which can be imputed to make the record
consistent with respect to all edits. As mentioned in the introduction, this interpre-
tation of all edits as hard edits can lead to systematic differences between automatic
editing and manual editing, because it precludes a meaningful use of soft edits. In
this section, we suggest a new formulation of the error localisation problem which
distinguishes between hard and soft edits.

Let Ψ denote the set of edits to be used in the error localisation problem. We
assume that this set can be partitioned into two disjoint subsets: Ψ = ΨH ∪ ΨS .
The edits in ΨH are hard edits; the edits in ΨS are soft edits. From now on, a subset
of the variables is considered a feasible solution to the error localisation problem if
it can be imputed to satisfy all edits in ΨH . Moreover, we want to use the status of
the imputed record with respect to the edits in ΨS as auxiliary information in the
choice of an optimal solution. This may be done by adding another term to (4.8).

More precisely, the objective of the new error localisation problem is to find a
subset of the variables which (i) can be imputed so that the imputed record satisfies
all edits in ΨH , and (ii) minimises the following target function:

D = λDFH + (1− λ)Dsoft, (4.13)

where Dsoft represents the costs associated with failed edits in ΨS . The parameter
λ ∈ [0, 1] determines the relative contribution of both terms in (4.13). The original
Fellegi-Holt paradigm is recovered as a special case by choosing λ = 1. Thus, the
new error localisation problem can be seen as a generalisation of the old one.

In order to use (4.13) in practice, one has to choose an expression for Dsoft.
Probably the easiest way to assign costs to failed soft edits is to associate a fixed
failure weight sk to each edit in ΨS , and to define Dsoft as the sum of the failure
weights of the soft edits that remain failed:

Dsoft =

KS∑
k=1

skzk, (4.14)

with KS the number of edits in ΨS and zk a binary variable such that zk = 1

if the kth soft edit is failed and zk = 0 otherwise. The failure weights may be
chosen by subject-matter experts, analogously to the confidence weights, to express
the importance that is attached to different soft edits from a subject-matter related

97



Chapter 4. Automatic Editing with Hard and Soft Edits

point of view. Alternatively, the failure weights may be based on the proportion
of records that fail each soft edit in a historical data set which has been edited
manually.

A drawback of using fixed failure weights is that they do not take the size of
the edit failures into account: every record that fails a particular soft edit receives
the same contribution to Dsoft, namely sk. By contrast, a human editor sees a soft
edit failure as an indication that an observed combination of values is suspicious,
and the degree of suspicion depends on the size of the edit failure: a small failure
is ignored more easily than a large failure. Hence, it seems interesting to take
the size of the edit failures into account in Dsoft. This point will be taken up in
Section 4.8, since it introduces certain additional difficulties. For now, we assume
that expression (4.14) is used.

We should mention that taking soft restrictions into account by adding an ap-
propriate term to a target function is a well-known technique in mathematical opti-
misation. The idea is related to other optimisation techniques, such as Lagrangian
relaxation [see e.g., Nemhauser and Wolsey (1988)]. One example of a practical
application with soft constraints is that of the so-called benchmarking problem for
national accounts (Magnus et al., 2000). To our best knowledge, the application in
the context of the error localisation problem is new.

We should also note that expression (4.13) is in some respects similar to the
minimisation criterion of the Nearest-neighbour Imputation Methodology (NIM)
developed by Statistics Canada for editing demographic census data (Bankier et al.,
2000; Bankier and Crowe, 2009). In particular, the NIM also departs from the
Fellegi-Holt paradigm by minimising a convex combination of two terms, the first
measuring the amount of imputation and the second measuring the plausibility of
the imputed record.

4.4 A short theory of edit failures

4.4.1 Numerical data

Having formulated a new error localisation problem, we will now show how this
problem may be solved by an adapted version of the branch-and-bound algorithm
of De Waal and Quere (2003). To do this, we first need to extend the fundamental
property mentioned at the end of Section 4.2.3 to the case that some of the edits
may be failed. For convenience, we shall first examine the case of purely numerical
data. The next subsection examines the case of purely categorical and mixed data.

In the case of purely numerical data, all edits take the form (4.6) or (4.7).
Moreover, the implied edit (4.9) is reduced to its numerical part. The fundamental
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property given at the end of Section 4.2.3 implies in particular the following: if a
given set of values for x1, . . . , xg−1, xg+1, . . . , xp does not satisfy the implied edit
(4.9), then it is impossible to find a value for xg that satisfies ψs and ψt simultane-
ously. However, it is still possible in this case to find a value for xg that satisfies
one of the edits ψs or ψt. This observation, which is more or less trivial, forms the
basis for the proof of Theorem 4.1 below.

Suppose that, at some point during an execution of the branch-and-bound algo-
rithm of De Waal and Quere (2003), q numerical variables have been treated (i.e.,
either eliminated or fixed). We denote the current set of edits by Ψq, and the edits
in this set by ψk

q . By definition, Ψ0 ≡ Ψ, the original set of edits. It is possible to
associate with each current edit ψk

q an index set Bk
q , which contains the indices of

all the original edits that have been used, directly or indirectly, to derive this edit.
In fact, Bk

q can be defined recursively as follows:

• For an original edit ψk
0 , we define Bk

0 := {k}.

• For an edit ψk
q which is derived from one other edit ψl

q−1, either by fixing a
variable to its original value or by simply copying the edit, we define Bk

q :=

Bl
q−1.

• For an edit ψk
q which is derived by eliminating a variable from a set of edits

ψt
q−1 (t ∈ T ), we define Bk

q :=
∪

t∈T B
t
q−1.

Note that, for numerical data, the set T in the last item always contains exactly
two edits. Larger edit sets may be encountered in the categorical case considered
below.

A set B is called a representing set of a collection of sets Bk1
q , . . . , B

kr
q if it

contains at least one element from each of Bk1
q , . . . , B

kr
q ; see, for instance, Mirsky

(1971, p. 25). It should be noted that, in our case, a representing set B identifies
a subset of Ψ0, the set of original edits. We can now formulate the following
theorem.

Theorem 4.1 Suppose that q numerical variables have been treated and that the
current set of numerical edits can be partitioned as Ψq = Ψ

(1)
q ∪ Ψ

(2)
q , where the

edits in Ψ
(1)
q are satisfied by the original values of the p − q remaining variables,

and the edits in Ψ
(2)
q are failed. Let B be a representing set of the index sets Bk

q for

all ψk
q ∈ Ψ

(2)
q . Then there exist values for the eliminated variables that, together

with the original values of the other variables, satisfy all original edits except those
in B.
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Proof. The proof of this theorem is given in Appendix 4.A.1. 2

Example. Suppose that there are three numerical variables (x1, x2, x3) that should
satisfy the following eight edits:

ψ1
0 : x1 + x2 + x3 = 20

ψ2
0 : x1 − x2 ≥ 3

ψ3
0 : −x1 + x2 ≥ −6

ψ4
0 : −x1 + x3 ≥ 5

ψ5
0 : x1 − x3 ≥ −10

ψ6
0 : x1 ≥ 0

ψ7
0 : x2 ≥ 0

ψ8
0 : x3 ≥ 0

The record (x01, x
0
2, x

0
3) = (10, 1,−3) is inconsistent with respect to these edits.

Upon eliminating x1 from the original set of edits, we find the following updated
set of edits:

ψ1
1 : −2x2 − x3 ≥ −17 (B1

1 = {1, 2})
ψ2
1 : 2x2 + x3 ≥ 14 (B2

1 = {1, 3})
ψ3
1 : x2 + 2x3 ≥ 25 (B3

1 = {1, 4})
ψ4
1 : −x2 − 2x3 ≥ −30 (B4

1 = {1, 5})
ψ5
1 : −x2 − x3 ≥ −20 (B5

1 = {1, 6})
ψ6
1 : x2 ≥ 0 (B6

1 = {7})
ψ7
1 : x3 ≥ 0 (B7

1 = {8})
ψ8
1 : 0 ≥ −3 (B8

1 = {2, 3})
ψ9
1 : −x2 + x3 ≥ 8 (B9

1 = {2, 4})
ψ10
1 : x2 − x3 ≥ −16 (B10

1 = {3, 5})
ψ11
1 : 0 ≥ −5 (B11

1 = {4, 5})
ψ12
1 : x2 ≥ −6 (B12

1 = {3, 6})
ψ13
1 : x3 ≥ 5 (B13

1 = {4, 6})

The index set Bk
1 is displayed in brackets next to each edit.

By substituting the original values of x2 and x3 in the current set of edits, we
see that ψ2

1 , ψ3
1 , ψ7

1 , ψ9
1 , and ψ13

1 are failed. The set B = {1, 4, 8} is a representing
set for the associated index sets Bk

1 . According to Theorem 4.1, there exists a
value for x1 which, together with the original values of x2 and x3, satisfies the
original edits apart from ψ1

0 , ψ4
0 , and ψ8

0 . That this assertion is correct can be seen
by substituting x02 = 1 and x03 = −3 into the original set of edits; in fact, any value
x1 ∈ [4, 7] will do. 2

The importance of Theorem 4.1 is that it enables one to evaluate, at each node
of the branch-and-bound algorithm, which combinations of the original edits could
be satisfied by imputing the variables that have been eliminated so far, and also
which edits would remain failed. In particular, if we distinguish between hard and
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soft original edits, then this result makes it possible to use the branch-and-bound
algorithm to find all feasible solutions to the new error localisation problem from
Section 4.3, and also to evaluate, for each feasible solution, which of the soft edits
remain failed, and hence to evaluate the value ofDsoft. This idea will be elaborated
in Section 4.5.

Interestingly, the above-defined setsBk
q may also be used to identify redundant

edits, i.e., edits that follow directly from a combination of the other edits. Accord-
ing to a result found independently by Černikov (1963) and Kohler (1967), when q
variables have been eliminated by Fourier-Motzkin elimination, all edits with more
than q + 1 elements in Bk

q are redundant; see also Williams (1986) and De Jonge
and Van der Loo (2011) for a discussion of this result.

4.4.2 Categorical and mixed data

We shall now derive a similar result to Theorem 4.1 for the case of purely categor-
ical data. At the end of this section, we shall combine the two results so that they
may also be applied to mixed data.

In the case of purely categorical data, all edits take the form (4.5). Let us con-
sider the elimination method for categorical variables described in Section 4.2.3.
If a given set of values for v1, . . . , vg−1, vg+1, . . . , vm does not satisfy the implied
edit (4.12), then it is not possible to find a value for vg that, together with the other
values, satisfies all edits ψk with k ∈ T simultaneously. This is true because, by
property (4.11), F ∗

j (T ) ⊆ F k
j for all j ̸= g and all k ∈ T . Hence, if (4.12) is

failed by v1, . . . , vg−1, vg+1, . . . , vm, then plugging these values into an original
edit with k ∈ T produces a non-degenerate univariate edit for vg. Moreover, every
possible value of vg fails at least one of these univariate edits, because of property
(4.10). Interestingly, it is still always possible in this case to find a value for vg that
satisfies all edits in T but one. This follows from property (4.10) and the fact that
T is a minimal set having this property: for each k ∈ T , F k

g must contain at least
one value from Dg that is not covered by any other F l

g with l ∈ T .
We now present the analogue of Theorem 4.1 for categorical data, using the

same notation as for numerical data. In particular, the recursive definition of Bk
q is

exactly the same as in Section 4.4.1.

Theorem 4.2 Suppose that q categorical variables have been treated and that the
current set of categorical edits can be partitioned as Ψq = Ψ

(1)
q ∪Ψ

(2)
q , where the

edits in Ψ
(1)
q are satisfied by the original values of the m− q remaining variables,

and the edits in Ψ
(2)
q are failed. Let B be a representing set of the index sets Bk

q for

all ψk
q ∈ Ψ

(2)
q . Then there exist values for the eliminated variables that, together
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with the original values of the other variables, satisfy all original edits except those
in B.

Proof. The proof of this theorem is given in Appendix 4.A.2. 2

For an example that illustrates the use of this theorem, see Scholtus (2011b).
Finally, we remark that Theorem 4.1 and Theorem 4.2 can be used together

when the data are a mix of categorical and numerical variables. This follows from
the structure of the branch-and-bound algorithm of De Waal and Quere (2003),
where categorical variables are only treated once all numerical variables have been
eliminated or fixed. Hence, the two results may be applied consecutively. There
is a slight difference in the procedure for eliminating numerical variables, namely
that implied edits are only generated from pairs of edits having an overlapping
IF-condition; see Section 4.2.3. However, this does not affect the correctness of
Theorem 4.1.

4.5 An algorithm for solving the error localisation prob-
lem with hard and soft edits

We shall now describe an adapted version of the branch-and-bound algorithm of
De Waal and Quere (2003), which may be used to solve the error localisation prob-
lem defined in Section 4.3. The basic setup of the algorithm is the same as in
Section 4.2.3. In particular, the procedures for eliminating and fixing variables are
carried out the same way as in the original algorithm.

The main difference is that now in each node, the current set of edits Ψq is
partitioned into a current set of hard edits ΨqH and a current set of soft edits ΨqS .
For the root node, the partition simply follows that of the original set of edits, i.e.,
Ψ0H = ΨH and Ψ0S = ΨS . For all other nodes, the partition can be summarised
as follows: if an edit is generated only from hard edits, then it is a hard edit; if
any soft edits are involved in its generation, then it is a soft edit. Furthermore, for
each soft edit ψk

qS ∈ ΨqS , we construct an index set Bk
qS – analogous to Bk

q in
Section 4.4 – which contains the indices of all the original soft edits ψk

0S that were
involved, directly or indirectly, in its generation.

Having generated ΨqH and ΨqS for a particular node, we can fill in the original
values of the variables that have not been treated yet, to check which of these edits
are failed. In the old algorithm, this check could have two possible outcomes:
either more variables need to be eliminated (at least one of the edits is failed), or a
feasible solution has been found (none of the edits is failed). In the new algorithm,
three different situations may arise.
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First of all, if at least one edit in ΨqH is failed, then the variables that have
been eliminated so far cannot be imputed to satisfy the original hard edits. Hence,
more variables need to be eliminated. In this case, we continue the generation of
branches from the current node.

A second possibility is that none of the edits in ΨqH or ΨqS is failed. This
means that the variables that have been eliminated so far can be imputed to satisfy
all the original edits, both hard and soft. Thus, a feasible solution has been found,
for which the value of target function (4.13) equals D = λDFH. If this value
is smaller than or equal to the value of (4.13) for the best solution found so far,
say Dmin, then the new solution is stored. Otherwise, it is discarded. Either way,
it is not useful to continue the algorithm from the current node, because if more
variables are eliminated, the value of D can only increase. Hence, we return to the
last previous branch that has not been completely searched yet and continue the
algorithm from there.

The last possibility is that the edits in ΨqH are satisfied, but that at least one
edit in ΨqS is failed. In this case, the variables that have been eliminated so far
can be imputed to satisfy the original hard edits, but not all the original soft edits.
Hence, a feasible solution to the error localisation problem has been found, but the
contribution of Dsoft to D is non-zero. According to Theorem 4.1 or Theorem 4.2,
it is possible to satisfy all original soft edits, except those in a representing set B
of the index sets Bk

qS for all failed edits in ΨqS . Since this property is shared by all
representing sets, we are free to choose B in such a way that Dsoft is minimised,
given the selection of variables to impute. If expression (4.14) is used for Dsoft,
then the optimal choice of B can be found by solving the following minimisation
problem:

min
∑KS

k=1 skzk, under the conditions that:∑
k∈Bl

qS
zk ≥ 1, for all failed ψl

qS ∈ ΨqS ,

zk ∈ {0, 1} , k = 1, . . . ,KS .

(4.15)

This is a standard binary linear optimisation problem for which algorithms are
available [see e.g., Nemhauser and Wolsey (1988)]. The solution consists of a
vector (z∗1 , . . . , z

∗
KS

) of zeros and ones. The associated optimal representing set is
B∗ = {k : z∗k = 1} and the associated contribution of Dsoft to D is precisely the
minimal value of problem (4.15), say

D∗
soft =

KS∑
k=1

skz
∗
k =

∑
k∈B∗

sk.

As in the previous case, the value D = λDFH + (1 − λ)D∗
soft is compared to

Dmin. If D ≤ Dmin, then the current solution is stored, otherwise it is discarded.
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Either way, it is meaningful in this case to continue the algorithm from the current
node, because eliminating more variables may lead to a lower value of the target
function. This can happen because a solution that imputes more variables typically
fails fewer soft edits. Therefore, we continue the generation of branches from the
current node.

The correctness of this algorithm follows from the correctness of the original
algorithm of De Waal and Quere (2003) and the theory presented in Section 4.4.
The index sets Bk

q only have to be computed for the soft edits, because a subset
of the variables is never considered a feasible solution to the error localisation
problem when at least one of the hard edits remains failed. This means that, in
every application of Theorem 4.1 or Theorem 4.2, all implied edits in ΨqH must be
contained in Ψ

(1)
q . Finally, we note that the new algorithm reduces to the original

algorithm of De Waal and Quere (2003) in the special case that no soft edits have
been specified.

4.6 Example

To illustrate the algorithm of Section 4.5, we shall apply it to a small example
with numerical data. This is essentially an example from De Waal (2003b) to
which we have added a distinction between hard and soft edits. For a somewhat
larger example involving a mix of categorical and numerical variables, see Scholtus
(2011b).

In a fictitious business survey, there are four numerical variables: total turnover
(T ), profit (P ), total costs (C), and number of employees (N ). The following hard
edits and soft edits have been identified:

ψ1
0H : T − C − P = 0

ψ2
0H : T ≥ 0

ψ3
0H : C ≥ 0

ψ4
0H : N ≥ 0

ψ5
0H : 550N − T ≥ 0

ψ1
0S : 0.5T − P ≥ 0 (B1

0S = {1})
ψ2
0S : P + 0.1T ≥ 0 (B2

0S = {2})
Consider the following unedited record:

(T 0, P 0, C0, N0) = (100; 40, 000; 60, 000; 5).

This record fails the first hard edit and the first soft edit. The confidence weights of
the variables are: (wT , wP , wC , wN ) = (2, 1, 1, 3). We choose the failure weights
of the two soft edits to be s1 = s2 = 2. Finally, we choose λ = 1/2 in expression
(4.13).
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Suppose that the variable P is selected first. In the branch where P is elimi-
nated from the original edits, we obtain the following new set of edits:

ψ1
1H : T ≥ 0 (ψ2

0H)
ψ2
1H : C ≥ 0 (ψ3

0H)
ψ3
1H : N ≥ 0 (ψ4

0H)
ψ4
1H : 550N − T ≥ 0 (ψ5

0H)
ψ1
1S : −0.5T + C ≥ 0 (B1

1S = {1}) (ψ1
0H , ψ

1
0S)

ψ2
1S : 1.1T − C ≥ 0 (B2

1S = {2}) (ψ1
0H , ψ

2
0S)

ψ3
1S : 0.6T ≥ 0 (B3

1S = {1, 2}) (ψ1
0S , ψ

2
0S)

We have indicated in brackets from which of the previous edits each new edit
is derived. The third soft edit ψ3

1S is in fact equivalent to the first hard edit ψ1
1H ,

which means that it can be discarded.

Upon substituting the original values (T 0, C0, N0) = (100; 60, 000; 5) into
the current edits, it is seen that all edits are satisfied except for ψ2

1S . Since all hard
edits are satisfied, identifying only the original value of P as erroneous is a feasible
solution to the error localisation problem. Moreover, since B = {2} is (trivially)
a minimal representing set of B2

1S , it is possible to impute a value for P which
satisfies all the original edits except for ψ2

0S . Hence, the value of target function
(4.13) for this solution is (wP + s2)/2 = 3/2.

Possibly, the current solution may be improved by eliminating another variable,
say C, from the current set of edits. This yields:

ψ1
2H : T ≥ 0 (ψ1

1H)
ψ2
2H : N ≥ 0 (ψ3

1H)
ψ3
2H : 550N − T ≥ 0 (ψ4

1H)
ψ1
2S : 1.1T ≥ 0 (B1

2S = {2}) (ψ2
1H , ψ

2
1S)

ψ2
2S : 0.6T ≥ 0 (B2

2S = {1, 2}) (ψ1
1S , ψ

2
1S)

Each of the two new soft edits is redundant, because both are equivalent to hard
edit ψ1

2H . In fact, the remaining original values (T 0, N0) = (100, 5) satisfy all the
current edits. This means that P and C can be imputed to satisfy all the original
edits, both hard and soft. The value of target function (4.13) for this solution equals
(wP + wC)/2 = 1. Thus, the new solution improves on the previous one. More-
over, this solution cannot be improved further by eliminating more variables in the
current branch of the binary tree.

If the rest of the binary tree is explored, it eventually turns out that the best so-
lution found so far (impute P and C) is also the optimal solution. A possible con-
sistent record obtained by imputing P and C is: (T, P,C,N) = (100; 40; 60; 5).
This solution has the nice interpretation that the original values of profit and total
costs were overstated by a factor of 1, 000. It is of interest to note that, if only the
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hard edits are used in this example, then the first solution found above (impute only
P ) is the optimal solution. In that case, there is only one way to obtain a consistent
record: (T, P,C,N) = (100;−59, 900; 60, 000; 5). This illustrates that, in this
example at least, soft edits are important for finding imputations that are not only
consistent with the hard edits, but also plausible.

4.7 Application

To test the new error localisation algorithm in practice, a prototype implementation
was written using the R programming language. This prototype draws heavily on
the existing error localisation functionality in R that was made available in the
editrules package (De Jonge and Van der Loo, 2011; Van der Loo and De
Jonge, 2011).

To test the prototype, an artificial data set was constructed by selecting twelve
numerical variables (x1, . . . , x12) from the Netherlands’ structural business statis-
tics of 2007 for the wholesale sector. We selected all records pertaining to medium-
sized businesses (with 10 to 100 employees) that had been edited manually during
regular production, and divided these into two data sets of 728 records each. Both
of the original data sets were considered error-free. We introduced a substantial
number of random errors into one of the data sets by applying the following proce-
dure:

• in 4% of the original non-zero values, two digits were interchanged;

• in 4% of the original non-zero values, a random digit was added;

• in 4% of the original non-zero values, a random digit was omitted;

• in 4% of the original non-zero values, a random digit was replaced by another
digit;

• 4% of the original non-zero values were multiplied by 25;

• 4% of the original non-zero values were divided by 25 and rounded to the
nearest integer;

• 6% of the original non-zero values were replaced by zero;

• 5% of the original zero values were replaced by random integers from the
set {1, . . . , 1000};

• 10% of the original values of x11 and x12 were multiplied by −1.
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Table 4.1: The edits that were used in the test application.

hard edits: x1 + x2 = x3
x2 = x4
x5 + x6 + x7 = x8
x3 + x8 = x9
x9 − x10 = x11
xj ≥ 0 (j = 1, . . . , 10 and j = 12)

soft edits: x2 ≥ 0.5x3
x3 ≥ 0.9x9
x5 + x6 ≥ x7
x9 ≥ 50x12
x9 ≤ 5000x12
x11 ≤ 0.4x9
x11 ≥ −0.1x9
x12 ≥ 1
x12 ≥ 5
x12 ≤ 100

This procedure was carried out in such a way that at most one change could occur
in each value. The second data set was left error-free and was used as reference
data.

Table 4.1 shows the hard and soft edits that were applied to the test data. The
hard edits were copied from the regular production system. The soft edits were
identified by examining a number of univariate and bivariate distributions in the
reference data.

The error localisation algorithm was applied to the data set with artificial er-
rors using several different set-ups. Throughout, all confidence weights wN

j were
chosen equal to 1, and the parameter λ in (4.13) was chosen equal to 1/2. We
considered the following approaches:

A. The first test used only the hard edits from Table 4.1.

B. The second test used all edits from Table 4.1, with all edits interpreted as
hard edits.

C. The third test used all edits from Table 4.1, with a distinction between hard
and soft edits. Each soft edit received the same fixed failure weight sk = 1.

D. The fourth test was similar to the third test, but with fixed failure weights
that differed between soft edits. For each soft edit, sk was calculated as the
fraction of records in the reference data set that satisfied the edit. Thus, a
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soft edit received a lower failure weight if it was failed more often in the
reference data set, and vice versa. The rationale behind this is that all soft
edit failures occurring in the reference data were caused by unusual, but
correct combinations of values. By associating low weights to soft edits that
are often failed in the reference data, we ensure that these edits may also be
failed more easily when editing the test data.

Since the distribution of errors in our test data set was known, we could directly
evaluate the performance of each automatic error localisation approach. To this
end, we used several quality indicators. Consider the following 2× 2 contingency
table:

detected:
error no error

true: error TP FN
no error FP TN

The first quality indicator measures the proportion of true errors that were missed
by the algorithm (proportion of false negatives):

α =
FN

TP + FN
.

The second quality indicator measures the proportion of correct values that were
mistaken for errors by the algorithm (proportion of false positives):

β =
FP

FP + TN
.

The third quality indicator measures the overall proportion of wrong decisions
made by the algorithm:

δ =
FN + FP

TP + FN + FP + TN
.

These three indicators evaluate the performance of the algorithm with respect to
identifying individual values as correct or erroneous. They have been used in pre-
vious evaluation studies; see, for instance, Pannekoek and De Waal (2005).

To evaluate the performance of the algorithm from a slightly different angle,
we also calculated the percentage of records for which the algorithm found exactly
the right solution – that is, the solution that identifies as erroneous all erroneous
values and only these. This indicator is denoted by ρ. A good editing approach
should have low scores on α, β, and δ, but a high score on ρ.

Table 4.2 shows the values of the quality indicators for editing approaches A,
B, C, and D. It can be seen that approach B is outperformed by the other approaches
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Table 4.2: Results of automatic error localisation for the artificial data.

quality indicators
approach α β δ ρ

A 0.364 0.047 0.115 40%
B 0.232 0.131 0.153 37%
C 0.227 0.060 0.096 47%
D 0.253 0.037 0.083 52%

on all measures, except for the proportion of missed errors. Thus, using the soft
edits as if they were hard edits does not work well for this data set; in fact, better
results are achieved by approach A, which does not use the soft edits at all. It can
also be seen that approaches C and D, which use the new algorithm to take the
soft edits into account, yield better results than approaches A and B, which use
the old algorithm. Overall, approach D appears to achieve the best results in this
experiment. Compared with approach A, approach D in fact correctly identifies
more errors and more correct values.

It should be noted that, under the old definition of the error localisation prob-
lem, approaches A and B represent the two extreme options available for using soft
edits: either not using them, or using them all as hard edits. As a compromise be-
tween these options, one could also decide to use only a subset of the soft edits as
hard edits and discard the others. We did not test this approach during the experi-
ment. One might expect that it would lead to scores on the α, β, δ, and ρ measures
in between those of approaches A and B.

4.8 Conclusion

In this chapter, we proposed a new formulation of the error localisation problem
which can take the distinction between hard and soft edits into account. In addi-
tion, we showed that a modified version of the branch-and-bound algorithm of De
Waal and Quere (2003) can be used to solve this new error localisation problem.
It was suggested that this new algorithm can be used to increase the quality of au-
tomatic editing. This suggestion was confirmed by the empirical results reported
in Section 4.7, although it should be stressed that these results were obtained with
data containing synthetic errors. An application is currently being investigated of
the new error localisation algorithm to realistic data.

It remains an open problem how the costs of soft edit failures may best be
modelled, i.e., how the termDsoft in (4.13) should be defined. The different results
with approaches C and D in Section 4.7 demonstrate that the quality of automatic
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error localisation may be improved by a suitable choice of failure weights. It will
be interesting to see to what extent the quality of automatic editing may be im-
proved further by experimenting with different combinations of failure weights sk,
confidence weights wj , and the balancing parameter λ in (4.13).

Other forms ofDsoft than (4.14) could also be considered, including forms that
depend on the sizes of the soft edit failures. As mentioned in Section 4.3, it is
intuitively appealing to take the amounts by which soft edits are failed into account
in the error localisation problem, so that larger soft edit failures yield higher values
of Dsoft. One interesting choice for Dsoft could be the Mahalanobis distance of
soft edit failures, as suggested by Hedlin (2003) in a different context. It should
be noted that the algorithm from Section 4.5 may be used to solve the error lo-
calisation problem for all choices of Dsoft that can be expressed as (reasonably
well-behaved) functions of z1, . . . , zKS

. One simply uses the appropriate expres-
sion for Dsoft as the target function in problem (4.15). On the other hand, if Dsoft

depends explicitly on the sizes of the soft edit failures, then we have to resort to a
more complex approach. In particular, the information provided by Theorems 4.1
and 4.2 is no longer sufficient, because we now need to know not only which soft
edits will be failed after imputation but also the amounts by which they will be
failed. An approach for solving the error localisation problem in this more com-
plicated situation can be found in Scholtus (2011b). Scholtus and Göksen (2012)
experimented with many different forms of Dsoft in a simulation study involving
both real and synthetic data.1

In summary, it remains to be seen how the theoretical results outlined in this
chapter should be applied to obtain the best results in practice. Nevertheless, given
that subject-matter experts use the conceptual difference between hard and soft ed-
its during manual editing, it seems evident that the new error localisation algorithm
has the potential to increase the quality of automatic editing.

Appendix 4.A Proofs

4.A.1 Proof of Theorem 4.1

In order to prove Theorem 4.1, it is convenient to prove first an auxiliary lemma.
Suppose that Ψq is obtained from Ψq−1 by eliminating xg. We define, for each edit

1It is shown in Scholtus (2015) that the new error localisation problem given by (4.13) with
Dsoft of the form (4.14) can be re-formulated as an instance of the original Fellegi-Holt-based error
localisation problem involving only hard edits, by introducing auxiliary variables and re-writing the
soft edits. This result does not extend to the problem with other forms of Dsoft. Thus, one practical
advantage of using the simple form (4.14) is that in this case existing algorithms for automatic editing
could be used, with some very minor modifications, to solve the new error localisation problem.
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ψk
q , the index set Ak

q of the edit(s) in Ψq−1 from which it has been derived. That
is to say, we define Ak

q := {l} if ψk
q is obtained by copying the edit ψl

q−1, and
we define Ak

q := {s, t} if ψk
q is obtained by eliminating xg from the pair of edits

(ψs
q−1, ψ

t
q−1).

Lemma 4.1 Consider the situation of Theorem 4.1 for q ≥ 1, and suppose that xg
has been eliminated to obtain Ψq from Ψq−1. Let A be a representing set of the
index sets Ak

q belonging to all ψk
q ∈ Ψ

(2)
q . Then there exists a value for xg that,

together with the original values of the variables that are involved in Ψq, satisfies
all edits in Ψq−1 except those in A.

Proof (of Lemma 4.1). By construction, A contains all indices of failed edits from
Ψq−1 which do not involve xg. Hence, the only way for the lemma to be false
would be if there existed two edits that involve xg, say ψs

q−1 and ψt
q−1, with s ̸∈ A

and t ̸∈ A, so that it is not possible to find a value for xg that satisfies both edits
simultaneously. In this case, an implied edit in Ψq is generated by eliminating xg
from ψs

q−1 and ψt
q−1. Moreover, by the fundamental property given at the end of

Section 4.2.3, this implied edit must be failed by the original values of the other
variables, i.e., the implied edit must be an element of Ψ(2)

q . But this would contra-
dict the assumption that A is a representing set of Ak

q for all ψk
q ∈ Ψ

(2)
q . Hence, it

is impossible to find such a pair of edits, and the lemma follows. 2

The proof of Theorem 4.1 now proceeds by induction on the number of treated
variables q. For q = 0, the statement is trivial. For q = 1, the theorem follows as
a special case of Lemma 4.1; note that Bk

1 ≡ Ak
1 . We suppose therefore that the

statement has been proved for all q ∈ {0, 1, . . . , Q− 1}, and we consider the case
q = Q, with Q ≥ 2.

If ΨQ is obtained from ΨQ−1 by fixing a variable to its original value, and B is
a representing set of the sets Bk

Q for the failed edits from ΨQ, then by construction
B is also a representing set of the sets Bk

Q−1 for the failed edits from ΨQ−1. Thus,
in this case, the statement for q = Q follows immediately from the induction
hypothesis.

Hence, we are left with the case that ΨQ is obtained from ΨQ−1 by eliminating
a variable, say xg. We define, for each ψk

Q ∈ Ψ
(2)
Q , the index set Ak

Q of the edit(s)
from ΨQ−1 from which ψk

Q is derived, as above. Next, we use B to construct a set

A, by applying the following procedure to each ψk
Q ∈ Ψ

(2)
Q :

• If ψk
Q is obtained by copying ψl

Q−1 (so Ak
Q = {l} and Bk

Q = Bl
Q−1), then

we add l to A.
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• If ψk
Q is obtained by eliminating xg from ψs

Q−1 and ψt
Q−1 (so that Ak

Q =

{s, t} and Bk
Q = Bs

Q−1 ∪ Bt
Q−1), then we add s to A if B contains an

element of Bs
Q−1, and we add t to A otherwise.

It is easy to see that this procedure produces a representing set A of the index sets
Ak

Q for all ψk
Q ∈ Ψ

(2)
Q .

According to Lemma 4.1, there exists a value for xg which, together with the
original values of the p − q variables that have not been treated, satisfies the edits
in ΨQ−1 except those in A. That is to say, ΨQ−1 can be partitioned similarly to
ΨQ as ΨQ−1 = Ψ

(1)
Q−1 ∪ Ψ

(2)
Q−1, where Ψ

(2)
Q−1 contains the edits with indices in

A. Moreover, it is not difficult to see that the above procedure implies that B is a
representing set of the index setsBk

Q−1 for all ψk
Q−1 ∈ Ψ

(2)
Q−1. Hence, the induction

hypothesis establishes that, given the original values of the variables that have not
been eliminated and given the chosen value for xg, there exist values for the other
eliminated variables that satisfy all the original edits except those inB. This shows
that the statement holds for q = Q and completes the proof of Theorem 4.1.

4.A.2 Proof of Theorem 4.2

To prove Theorem 4.2, we start again with an auxiliary lemma. Analogous to the
numerical case, when Ψq is obtained from Ψq−1 by eliminating vg, we define the
index set Ak

q of edits in Ψq−1 from which the edit ψk
q ∈ Ψq is derived. To be

precise, we define Ak
q := {l} if ψk

q is obtained by copying the edit ψl
q−1, and we

define Ak
q := T if ψk

q is obtained by eliminating a variable from the set of edits
ψt
q−1 (t ∈ T ).

Lemma 4.2 Consider the situation of Theorem 4.2 for q ≥ 1, and suppose that vg
has been eliminated to obtain Ψq from Ψq−1. Let A be a representing set of the
index sets Ak

q belonging to all ψk
q ∈ Ψ

(2)
q . Then there exists a value for vg that,

together with the original values of the variables that are involved in Ψq, satisfies
all edits in Ψq−1 except those in A.

Proof (of Lemma 4.2). By construction, A contains all indices of failed edits
from Ψq−1 which do not involve vg. Hence, the only way for the lemma to be
false would be if there existed edits that involve vg, say ψt1

q−1, . . . , ψ
tr
q−1, with

A ∩ {t1, . . . , tr} = ∅, so that it is not possible to find a value for vg that satis-
fies these edits simultaneously, given the values of the other variables. Clearly,
this could only happen if F t1

g ∪ · · · ∪ F tr
g = Dg, since otherwise any value for vg

outside F t1
g ∪ · · · ∪ F tr

g would work. We may assume without loss of generality
that T ′ = {t1, . . . , tr} is a minimal set having this property. Furthermore, it must

112



4.A. Proofs

hold in this case that for all variables involved in Ψq, the original value of vj is
contained in all sets F t1

j , . . . , F
tr
j . In other words, T ′ must satisfy properties (4.10)

and (4.11). This means that T ′ would generate an implied edit in Ψq which, by
the fundamental property given at the end of Section 4.2.3, must be failed by the
original values of the remaining variables. However, this would contradict the as-
sumption that A is a representing set of Ak

q for all ψk
q ∈ Ψ

(2)
q . This completes the

proof of Lemma 4.2. 2

The proof of Theorem 4.2 is now completely analogous to that of Theorem 4.1,
with Lemma 4.2 taking the role of Lemma 4.1.
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Chapter 5

A Generalised Fellegi-Holt
Paradigm for Automatic Error
Localisation

The contents of this chapter have been published in Survey Methodology as Scholtus (2016). In

that version, Appendix 5.B was omitted and the term “allowed edit operation” was used instead of

“admissible edit operation”. Otherwise, the chapter is identical to the article, apart from some minor

textual corrections and adjustments.

5.1 Introduction

Data that have been collected for the production of statistics inevitably contain er-
rors. A data editing process is needed to detect and amend these errors, at least
in so far as they have an appreciable impact on the quality of the statistical output
(Granquist and Kovar, 1997). Traditionally, data editing has been a manual task,
ideally performed by professional editors with extensive subject-matter knowledge.
To improve the efficiency, timeliness, and reproducibility of editing, many statis-
tical institutes have attempted to automate parts of this process (Pannekoek et al.,
2013). This has resulted in deductive correction methods for systematic errors and
error localisation algorithms for random errors (De Waal et al., 2011, Chapter 1).
In this chapter, I will focus on automatic editing for random errors.

Methods for this task usually proceed by minimally adjusting each record of
data, according to some optimisation criterion, so that it becomes consistent with
a given set of constraints known as edit rules, or edits for short. Depending on
the effectiveness of the optimisation criterion and the strength of the edit rules,
automatic editing may be used as a partial alternative to traditional manual editing.
In practice, automatic editing is applied nearly always in combination with some

115



Chapter 5. A Generalised Fellegi-Holt Paradigm

form of selective editing, which means that the most influential errors are treated
manually (Hidiroglou and Berthelot, 1986; Granquist, 1995, 1997; Granquist and
Kovar, 1997; Lawrence and McKenzie, 2000; Hedlin, 2003; De Waal et al., 2011).

Most automatic editing methods that are currently used in official statistics are
based on the paradigm of Fellegi and Holt (1976): for each record, the smallest
subset of variables is identified as erroneous that can be imputed so that the record
becomes consistent with the edits. A slight generalisation is obtained by assigning
so-called confidence weights to the variables and minimising the total weight of
the imputed variables. Once this error localisation problem is solved, suitable new
values have to be found in a separate step for the variables that were identified as
erroneous. This is the so-called consistent imputation problem; see De Waal et al.
(2011) and their references. In this chapter, I will focus on the error localisation
problem.

At Statistics Netherlands, error localisation based on the Fellegi-Holt paradigm
has been a part of the data editing process for Structural Business Statistics (SBS)
for over a decade now. In evaluation studies, where the same SBS data were edited
both automatically and manually, a number of systematic differences were found
between the two editing efforts. Many of these differences could be explained
by the fact that human editors performed certain types of adjustments that were
suboptimal under the Fellegi-Holt paradigm. For instance, editors sometimes in-
terchanged the values of associated costs and revenues items, or transferred parts
of reported amounts between variables.

In practice, the outcome of manual editing is usually taken as the “gold stan-
dard” for assessing the quality of automatic editing. A critical evaluation of this
assumption is beyond the scope of the present chapter; however, see EDIMBUS
(2007, pp. 34–35). Here I simply note that, by improving the ability of automatic
editing methods to mimic the results of manual editing, their usefulness in practice
may be increased. In turn, this means that the share of automatic editing may be
increased to improve the efficiency of the data editing process (Pannekoek et al.,
2013).

To some extent, systematic differences between automatic and manual editing
could be prevented by a clever choice of confidence weights. In general, however,
the effects of a modification of the confidence weights on the results of automatic
editing are difficult to predict. Moreover, if the editors apply a number of differ-
ent complex adjustments, it might be impossible to model all of them under the
Fellegi-Holt paradigm using a single set of confidence weights. Another option is
to try to catch errors for which the Fellegi-Holt paradigm is known to provide an
unsatisfactory solution at an earlier stage in the data editing process, i.e., during
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deductive correction of systematic errors through automatic correction rules (De
Waal et al., 2011; Scholtus, 2011a). This approach has practical limitations, how-
ever, because it may require a large collection of if-then rules, which would be
difficult to design and maintain over time (Chen et al., 2003). Moreover, it is not
self-evident that appropriate correction rules can be found for all errors that do not
fit within the Fellegi-Holt paradigm.

In this chapter, a different approach is suggested. A new definition of the error
localisation problem is proposed that allows for the possibility that errors affect
more than one variable at a time. It is shown that this problem contains error local-
isation under the original Fellegi-Holt paradigm as a special case. Throughout this
chapter, I restrict attention to numerical data and linear edits; a possible extension
to categorical and mixed data will be discussed briefly in Section 5.8.

The remainder of this chapter is organised as follows. Section 5.2 briefly re-
views relevant previous work done in this area. In Section 5.3, the concept of an
edit operation is introduced and illustrated. The new error localisation problem is
formulated in terms of these edit operations in Section 5.4. Section 5.5 generalises
an existing method for identifying solutions to the Fellegi-Holt-based error locali-
sation problem, and this result is used in Section 5.6 to outline a possible algorithm
for solving the new problem. A small simulation study is discussed in Section 5.7.
Finally, some conclusions and questions for further research follow in Section 5.8.

5.2 Background and related work

Let x = (x1, . . . , xp)
′ ∈ Rp be a record of p numerical variables. Suppose that

this record has to satisfy k edit rules, in the form of the following system of linear
(in)equalities:

Ax+ b⊙ 0, (5.1)

where A = (arj) is a k × p-matrix of coefficients and b = (b1, . . . , bk)
′ is a

vector of constants. Here and elsewhere, 0 represents a vector of zeros of appro-
priate length; similarly, ⊙ represents a symbolic vector of operators from the set
{≥,≤,=}.

For a given record x that does not satisfy all edits in (5.1), the Fellegi-Holt-
based error localisation problem amounts to finding the minimum of

p∑
j=1

wjδj , (5.2)

with wj > 0 the confidence weight of variable xj and δj ∈ {0, 1}, under the
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condition that the original record can be made consistent with the edits by imputing
only those xj with δj = 1 (De Waal et al., 2011, p. 66).

Fellegi and Holt (1976) also proposed a method for solving the above error
localisation problem, based on the generation of a sufficient set of so-called im-
plied edits (see below). Unfortunately, the number of implied edits needed by this
method is often extremely large in practice. Over the past decades, various dedi-
cated algorithms for the error localisation problem have been developed by, among
others, Schaffer (1987), Garfinkel et al. (1988), Kovar and Whitridge (1990), Rags-
dale and McKeown (1996), De Waal (2003c), De Waal and Quere (2003), Riera-
Ledesma and Salazar-González (2003, 2007), Bruni (2004), and De Jonge and
Van der Loo (2014). Early algorithms mostly focused on strengthening the origi-
nal method of Fellegi and Holt (1976) by reducing the number of required implied
edits. More recent algorithms rely on the fact that the error localisation problem
can be written as a mixed-integer programming problem, which makes it possi-
ble to apply standard optimisation techniques. See also De Waal and Coutinho
(2005) or De Waal et al. (2011) for an overview and comparison of various error
localisation algorithms.

Implied edits are constraints that follow logically from the original edits (5.1).
In the present context (numerical data, linear edits), all relevant implied edits may
be generated by a technique called Fourier-Motzkin elimination [FM elimination;
cf. Williams (1986)]. FM elimination transforms a system of linear constraints
having p variables into a system of implied linear constraints having at most p− 1

variables; thus, at least one of the original variables is eliminated. For mathematical
details, see Appendix 5.A.

FM elimination has the following fundamental property: the system of implied
constraints is satisfied by the values of the non-eliminated variables if, and only if,
there exists a value for the eliminated variable that, together with the other values,
satisfies the original system of constraints. In error localisation under the Fellegi-
Holt paradigm, by repeatedly applying this fundamental property, one may verify
whether any particular combination of variables can be imputed to obtain a con-
sistent record, given the original values of the other variables. A clear illustration
of this use of FM elimination is provided by the error localisation algorithm of De
Waal and Quere (2003).

To conclude this section, it is interesting to look briefly at the statistical in-
terpretation of the error localisation problem. In fact, in motivating their paradigm
for automatic error localisation, Fellegi and Holt (1976) did not provide any formal
statistical argument. Their reasoning was more intuitive:

“The data in each record should be made to satisfy all edits by changing the
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fewest possible items of data (fields). This we believe to be in agreement with
the idea of keeping the maximum amount of original data unchanged, subject
to the constraints of the edits, and so manufacturing as little data as possible.
At the same time, if errors are comparatively rare, it seems more likely that
we will identify the truly erroneous fields.” (Fellegi and Holt, 1976, p. 18)

A statistical argument for minimising the weighted number of imputed vari-
ables was provided by Liepins (1980) and Liepins et al. (1982), elaborating on
earlier results of Naus et al. (1972). Suppose that errors occur according to a
stochastic process, with each variable xj being observed in error with a proba-
bility pj that does not depend on its true value and with errors being independent
across variables. Suppose furthermore that the confidence weights are defined as
follows:

wj = − log

(
pj

1− pj

)
. (5.3)

Then it can be shown that minimising expression (5.2) is approximately equivalent
to maximising the likelihood of the unobserved error-free record. Note that these
authors tacitly assume that an error always affects one variable at a time.

Alternative error localisation procedures that are based more directly on sta-
tistical models have been proposed by, e.g., Little and Smith (1987) and Ghosh-
Dastidar and Schafer (2006). These procedures use outlier detection techniques
and require an explicit model for the true data. Unfortunately, they cannot handle
edit rules such as (5.1) in a straightforward manner.

5.3 Edit operations

Continuing with the notation from Section 5.2, I define an edit operation g to be
an affine function of the general form

g(x) = Tx+ Sα+ c, (5.4)

where T and S are known coefficient matrices of dimensions p × p and p × m,
respectively, α = (α1, . . . , αm)′ is a vector of free parameters that may occur in g,
and c is a p-vector of known constants. In the special case that g does not involve
any free parameters (m = 0), the second term in (5.4) vanishes. Sometimes, it may
be useful to impose one or several linear constraints on the free parameters in g:

Rα+ d⊙ 0, (5.5)

with R a known matrix, and d a known vector of constants. (Note: Matrix-vector
notation will be used throughout this chapter because it leads to a concise descrip-
tion of results; however, using matrices to represent edits and edit operations is
probably not the most efficient way to implement these results on a computer.)
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As a first example, consider the operation that replaces one of the original val-
ues in x by an arbitrary new value (imputation). I will call this an FH operation, in
view of its central role in automatic editing based on the Fellegi-Holt paradigm. Let
I denote the p×p identity matrix and ei the ith standard basis vector in Rp. The FH
operation that imputes the variable xj is given by (5.4) with T = I−eje

′
j , S = ej ,

and c = 0. This yields: g(x) = x+ej(α−xj) = (x1, . . . , xj−1, α, xj+1, . . . , xp)
′,

with α ∈ R a free parameter that represents the imputed value. It should be noted
that for a record of p variables, p distinct FH operations can be defined.

To further illustrate the concept of an edit operation, some other examples will
now be given. For notational convenience, I restrict attention to the case p = 3.

• An edit operation that changes the sign of one of the variables:

g

 x1
x2
x3

 =

 −1 0 0
0 1 0
0 0 1

 x1
x2
x3

+

 0
0
0

 =

 −x1
x2
x3

 .

• An edit operation that interchanges the values of two adjacent items:

g

 x1
x2
x3

 =

 0 1 0
1 0 0
0 0 1

 x1
x2
x3

+

 0
0
0

 =

 x2
x1
x3

 .

• An edit operation that transfers an amount between two items, where the
amount transferred may equal at most K units in either direction:

g

 x1
x2
x3

 =

 1 0 0
0 1 0
0 0 1

 x1
x2
x3

+

 1
0

−1

α+

 0
0
0


=

 x1 + α
x2

x3 − α

 ,

with the constraint that −K ≤ α ≤ K.

• An edit operation that imputes two variables simultaneously using a fixed
ratio:

g

 x1
x2
x3

 =

 0 0 0
0 0 0
0 0 1

 x1
x2
x3

+

 1 0
0 1
0 0

( α1

α2

)
+

 0
0
0


=

 α1

α2

x3

 ,

with the constraint that α = (α1, α2)
′ satisfies 10α1 − α2 = 0.
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Intuitively, an edit operation is supposed to “reverse the effects” of a particular
type of error that may have occurred in the observed data. That is to say, if the
error associated with edit operation g actually occurred in the observed record x,
then g(x) is the record that would have been observed if that error had not occurred.
Somewhat more formally, it is assumed here that errors occurring in the data can be
modelled by a stochastic “error generating process” E , and that each edit operation
acts as a “corrector” for one particular error that can occur under E (see Remark 4
in the next section).

If the edit operation g contains free parameters, the record g(x) might not be
determined uniquely even when the restrictions (5.1) and (5.5) are taken into ac-
count. In that case, one has to “impute” values for the free parameters that occur in
an edit operation, which in turn means that some of the variables in x are imputed
via the affine transformation given by (5.4). As in traditional Fellegi-Holt-based
editing, finding appropriate “imputations” for the free parameters will not be con-
sidered part of the error localisation problem here. On the other hand, if g does not
contain any free parameters, the imputed values in g(x) follow directly from the
edit operation itself and the distinction between error localisation and imputation
is blurred.

In any particular application, only a small subset of potential edit operations of
the form (5.4) would have a substantively meaningful interpretation, in the sense
that the associated types of errors are known to occur. In what follows, I assume
that a finite set of specific edit operations of the form (5.4) has been identified as
relevant for a particular application. This will be called the set of admissible edit
operations for that application. Some suggestions on how to construct this set will
be given in Section 5.8.

5.4 A generalised error localisation problem

Let G be a finite set of admissible edit operations for a given application of auto-
matic editing. Informally, I propose to generalise the error localisation problem of
Fellegi and Holt (1976) by replacing “the smallest subset of variables that can be
imputed to make the record consistent” with “the shortest sequence of admissible
edit operations that can be applied to make the record consistent”. To give a formal
definition of this generalised error localisation problem, some new notation and
concepts need to be introduced.

Consider a sequence of points x = x0,x1, . . . ,xt = y in Rp. A path from x

to y is defined as a sequence of distinct edit operations g1, . . . , gt ∈ G such that
xn = gn(xn−1) for all n ∈ {1, . . . , t}. (Note: In the case that gn contains free
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parameters, one should interpret this equality as “there exist feasible parameter
values such that gn maps xn−1 to xn”.) A path is denoted by P = [g1, . . . , gt].
The set of all possible paths from x to y is denoted by P(x,y). This set may be
empty. Later, I will use P(x;G) to denote, for a given subset G ⊆ G, the set of all
paths starting in x that consist of the edit operations in G in some order (without
specifying the free parameters); ifG contains t elements, P(x;G) contains t! paths.

To each edit operation g ∈ G, one can associate a weight wg > 0 that expresses
the costs of applying edit operation g. In particular, the weight of an FH operation
is to be chosen equal to the confidence weight of the variable that it imputes. Now
the length of a path P = [g1, . . . , gt] can be defined as the sum of the weights
of its constituent edit operations: ℓ(P ) =

∑t
n=1wgn , where, by convention, the

empty path has length zero. The distance from x to y is defined as the length of
the shortest path that connects x to y:

d(x,y) =

{
min {ℓ(P ) | P ∈ P(x,y)} if P(x,y) ̸= ∅,
∞ otherwise.

In general, d(x,y) satisfies the standard axioms of a metric except that it need
not be symmetric in x and y; it is a so-called quasimetric (Scholtus, 2014a). Ac-
cordingly, d(x,y) represents “the distance from x to y” rather than “the distance
between x and y”.

The distance from x to any closed, non-empty subset D ⊆ Rp is defined as the
distance to the nearest y ∈ D: d(x, D) = min {d(x,y) | y ∈ D}. For the purpose
of error localisation, the closed, non-empty subset of Rp that is of particular interest
is the set D0 of all points that satisfy (5.1).

I can now formulate the generalised error localisation problem.

Problem 5.1 Consider a given set of consistent records D0, a given set of admis-
sible edit operations G, and a given record x. If d(x, D0) = ∞, then the error
localisation problem for x is infeasible. Otherwise, any shortest path leading to
a record y ∈ D0 such that d(x,y) < ∞ is called a feasible solution to the error
localisation problem for x. A feasible solution is called optimal if it leads to a
record x∗ ∈ D0 such that

d(x,x∗) = d(x, D0). (5.6)

Formally, then, the generalised error localisation problem consists of finding an
optimal path of edit operations.

Remark 1. In general, there may be infinitely many records x∗ in D0 that satisfy
(5.6) and can be reached by the same path of edit operations. To solve the error
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localisation problem, it is sufficient to find an optimal path. Constructing an asso-
ciated record x∗ ∈ D0 may then be regarded as a generalisation of the consistent
imputation problem; cf. the discussion on imputation at the end of Section 5.3. 2

Remark 2. Problem 5.1 is infeasible for records that cannot be mapped onto D0 by
any combination of distinct edit operations in G. To avoid this situation, G should
be chosen sufficiently large so that d(x, D0) <∞ for all x ∈ Rp. In what follows,
I tacitly assume that G has this property. An easy way – not necessarily the only
way – to achieve this is by letting G contain at least all FH operations. That this is
sufficient follows from the fact that any two points in Rp are connected by a path
that concatenates the FH operations associated with the coordinates on which they
differ. 2

Remark 3. It is not difficult to see that Problem 5.1 reduces to the original error
localisation problem of Fellegi and Holt (1976) in the special case that G contains
only the FH operations. 2

Remark 4. As with the original Fellegi-Holt-based error localisation problem, it can
be shown that, under certain assumptions, minimising d(x,y) over all y ∈ D0 for a
given observed record x is approximately equivalent to maximising the likelihood
of the associated unobserved error-free record. The argument closely follows that
of Kruskal (1983, pp. 38–39) for the so-called Levenshtein distance in the context
of approximate string matching. This requires first of all that the edits (5.1) be hard
edits, i.e., failed only by erroneous values. In addition, it must be assumed that the
stochastic “error generating process” E introduced in Section 5.3 has the following
properties:

• There exists a one-to-one correspondence between the set of errors that can
occur under E and the set of admissible edit operations G that correct them.

• The errors in E occur independently of each other.

• The error corresponding to operation g occurs with known probability pg.

Finally, analogous to (5.3), the weights wg should be chosen according to

wg = − log

(
pg

1− pg

)
. (5.7)

Under these assumptions, Scholtus (2014a) adapted the argument of Kruskal (1983)
to show that the optimal solution to error localisation problem (5.6) can be justified
as an approximate maximum likelihood estimator. [Note: The derivation in Schol-
tus (2014a) assumed in addition that all pg ≪ 1, in which case wg ≈ − log pg.
This assumption is unnecessary; cf. Liepins (1980).] 2
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5.5 Implied edits for general edit operations

In this section, a result will be derived that establishes whether a given path of
edit operations of the form (5.4) can be used to make a given record consistent
with a given system of edit rules (i.e., is a feasible solution to the error localisation
problem). This result uses the FM elimination technique discussed in Section 5.2.

Let x be a given record and let yt be any record that can be obtained by apply-
ing, in sequence, the edit operations g1, . . . , gt to x:

yt = gt ◦ gt−1 ◦ · · · ◦ g1(x). (5.8)

Write gn(x) = Tnx + Snαn + cn, for n ∈ {1, . . . , t}. From (5.8) it follows by
induction that

y1 = T1x+ S1α1 + c1,

y2 = T2T1x+ S2α2 + c2 +T2 (S1α1 + c1) ,

and, in general,

yt = Tt · · ·T1x+ Stαt + ct +

t∑
n=2

Tt · · ·Tn (Sn−1αn−1 + cn−1) , (5.9)

where the sum over n is defined to be zero when t = 1. Moreover, all terms
involving Snαn vanish in these expressions when gn does not contain any free
parameters.

The path of edit operations P = [g1, . . . , gt] can be applied to x to obtain a
record that is consistent with the edits (5.1) if, and only if, there exists a yt of the
form (5.9) that satisfies Ayt + b⊙ 0 and all relevant additional restrictions of the
form (5.5) on α1, . . . ,αt. Using (5.9), Ayt + b⊙ 0 can be written as:

(ATt · · ·T1)x+ (ASt)αt +

t∑
n=2

(ATt · · ·TnSn−1)αn−1 + bt ⊙ 0, (5.10)

with bt = b+Act +
∑t

n=2ATt · · ·Tncn−1 a vector of constants.
Interestingly, (5.10) and the possible additional restrictions of the form (5.5)

constitute a linear system of the form (5.1) on the extended record (x′,α′
1, . . . ,α

′
t)
′.

Therefore, FM elimination may be used to remove all free parameters from this
system. This yields a system of implied restrictions for x. Moreover, a repeated
application of the fundamental property of FM elimination establishes that x sat-
isfies this system of implied edits if, and only if, there exist parameter values for
α1, . . . ,αt that, together with x, satisfy (5.10) and (5.5). Hence, it follows that a
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path of edit operations P = [g1, . . . , gt] can lead to a consistent record for x if, and
only if, x satisfies the system of implied edits obtained by eliminating α1, . . . ,αt

from (5.10) and (if relevant) additional restrictions of the form (5.5).

Example. Consider the following edits in x1 and x2:

x1 ≥ 0, (5.11)

x2 ≥ 0, (5.12)

x1 + x2 ≤ 5. (5.13)

Let g be the edit operation that transfers an amount of at most four units be-
tween x1 and x2, in either direction: g((x1, x2)

′) = (x1 + α, x2 − α)′ with
−4 ≤ α ≤ 4. For this single edit operation, the system of transformed edits
(5.10) is:

x1 + α ≥ 0, (5.14)

x2 − α ≥ 0, (5.15)

x1 + x2 ≤ 5. (5.16)

I also add the following restrictions of the form (5.5) on α:

α ≥ −4, (5.17)

α ≤ 4. (5.18)

This yields five linear constraints (5.14)–(5.18) on x1, x2, and α, from which α
may be removed by FM elimination to obtain:

x1 ≥ −4, (5.19)

x2 ≥ −4, (5.20)

x1 + x2 ≥ 0, (5.21)

x1 + x2 ≤ 5. (5.22)

According to the theory, any record (x1, x2)
′ that satisfies (5.19)–(5.22) can be

made consistent with the original edits (5.11)–(5.13) by transferring an amount of
α units (with −4 ≤ α ≤ 4) between x1 and x2. The example record (x1, x2)

′ =

(−2, 3)′ is inconsistent with the original edits (5.11)–(5.13) but satisfies (5.19)–
(5.22). This implies that the record can be made consistent with the original edits
by applying g. It is easy to see that this is true; any choice 2 ≤ α ≤ 3 will do. 2

It is interesting to note that, for the special case that P consists of the single
FH operation that imputes xj , the transformed system of edits (5.10) is obtained by
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replacing every occurrence of xj in the original edits by an unrestricted parameter
α. Eliminating α from (5.10) is equivalent in this case to eliminating xj directly
from the original edits. In this sense, the above result generalises the fundamental
property of FM elimination for FH operations to all edit operations of the form
(5.4).

In general, the set of records defined by expression (5.9) depends on the way
the edit operations are ordered. Thus, two paths consisting of the same set of edit
operations in a different order need not yield the same solution to the error locali-
sation problem. In this respect, general edit operations differ from FH operations
(Scholtus, 2014a).

5.6 An error localisation algorithm

In this section, I propose a relatively simple algorithm to solve the error localisation
problem of Section 5.4, using the theoretical result from the previous section.

In practical applications of error localisation in official statistics, it is not un-
usual to have records of over 100 variables. To obtain a problem that is compu-
tationally feasible, existing applications of automatic editing based on the Fellegi-
Holt paradigm usually specify an upper bound M on the number of variables that
may be imputed in a single record (e.g., M = 12 or M = 15). De Waal and
Coutinho (2005) argued that the introduction of such an upper bound is reasonable
because a record that requires more than, say, fifteen imputations should be con-
sidered unfit for automatic editing anyway. Following this tradition, one can also
introduce an upper bound R on the number of distinct edit operations that may be
applied to a single record. Even with this additional restriction, the search space of
potential solutions to Problem 5.1 will usually be too large in practice to find the
optimal solution by an exhaustive search.

Figure 5.1 summarises the proposed error localisation algorithm. Its basic set-
up was inspired by the apriori algorithm of Agrawal and Srikant (1994) for data
mining. Upon completion, the algorithm returns a set L containing all paths of
admissible edit operations that correspond to an optimal solution to Problem 5.1,
as well as the optimal path length W . [Note: An error localisation problem may
have multiple optimal solutions, and it may be beneficial to find all of them (Giles,
1988; De Waal et al., 2011, pp. 66–67).]

After initialisation in step 0, the algorithm cycles through steps 1, 2, and 3 at
most R times. In step 1 of the algorithm, the search space is limited by using the
following fact: if G has a proper subset H ⊂ G for which P(x;H) contains a
path that leads to a consistent record, then P(x;G) can contain only suboptimal
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Figure 5.1: An algorithm that finds all optimal paths of edit operations for Problem 5.1.

Step 0. Let x be a given record and G a given set of admissible edit opera-
tions. Initialise: L := ∅; B0 := {∅}; W := ∞; and t := 1.

Step 1. Determine all subsets G ⊆ G of cardinality t that satisfy these con-
ditions:

1. Every subset of t− 1 elements in G is part of Bt−1.

2. It holds that
∑

g∈Gwg ≤W .

Step 2. For each G found in step 1, construct P(x;G) and, for each path
P ∈ P(x;G), evaluate whether it can lead to a consistent record. If
so, then:

• if ℓ(P ) < W , define L := {P} and W := ℓ(P );

• if ℓ(P ) =W , define L := L ∪ {P}.

If none of the paths P ∈ P(x;G) leads to a consistent record, add G
to Bt.

Step 3. If t < R and Bt ̸= ∅, define t := t+ 1 and return to step 1.

solutions. Thus, any set G that has such a subset may be ignored by the algorithm.
Similarly, G may also be ignored whenever the total weight of the edit operations
in G exceeds the path length of the best feasible solution found so far.

During the tth iteration, the number of subsets G encountered in step 1 of the
algorithm equals

(|G|
t

)
. For each of these subsets, the conditions in step 1 have to

be checked. If a subset passes these checks, in step 2 all t! paths in P(x;G) are
evaluated using the theory of Section 5.5. The idea behind the apriori algorithm
is that, as t becomes larger, the majority of subsets will not pass the checks in
the first step, so that the total amount of computational work remains limited. In
the context of data mining, this desirable behaviour has indeed been observed in
practice. Whether it also occurs in the context of error localisation remains to be
seen.

One possible improvement to the algorithm can be made by observing that the
order in which edit operations are applied does not matter in all cases. Some-
times two paths in P(x;G) are equivalent in the sense that any record that can be
reached from x by the first path can also be reached by the second path, and vice
versa. This property defines an equivalence relation on P(x;G). Let P̃(x;G) be

127



Chapter 5. A Generalised Fellegi-Holt Paradigm

a set that contains one representative from each equivalence class of P(x;G) un-
der this relation. Clearly, the algorithm in Figure 5.1 remains correct if in step 2
the search is limited to P̃(x;G) instead of P(x;G). Scholtus (2014a) provides a
simple method for constructing P̃(x;G) from P(x;G).

A detailed example illustrating the above algorithm is given in Appendix 5.B.

5.7 Simulation study

To test the potential usefulness of the new error localisation approach, I conducted
a small simulation study, using the R environment for statistical computing (R De-
velopment Core Team, 2017). A prototype implementation was created in R of the
algorithm in Figure 5.1. This prototype made liberal use of the existing functional-
ity for Fellegi-Holt-based automatic editing available in the editrules package
(Van der Loo and De Jonge, 2012; De Jonge and Van der Loo, 2014). The pro-
gram was not optimised for computational efficiency, but it turned out to work
sufficiently fast for the relatively small error localisation problems encountered in
this simulation study. (Note: The R code used in this study is available from the
author upon request.)

The simulation study involved records of five numerical variables that should
satisfy the following nine linear edit rules:

x1 + x2 = x3,

x3 − x4 = x5,

xj ≥ 0, j ∈ {1, 2, 3, 4} ,
x1 ≥ x2,

x5 ≥ −0.1x3,

x5 ≤ 0.5x3.

Edits of this form might typically be encountered for SBS, as part of a much larger
set of edit rules (Scholtus, 2014a).

I created a random error-free data set of 2, 000 records by drawing from a
multivariate normal distribution (using the mvtnorm package) with the following
parameters:

µ =


500
250
750
600
150

 and Σ =


10, 000 −1, 250 8, 750 7, 500 1, 250
−1, 250 5, 000 3, 750 4, 000 −250
8, 750 3, 750 12, 500 11, 500 1, 000
7, 500 4, 000 11, 500 11, 750 −250
1, 250 −250 1, 000 −250 1, 250

 .
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Only records that satisfied all of the above edits were added to the data set. Note
that Σ is a singular covariance matrix that incorporates the two equality edits.
Technically, the resulting data follow a so-called truncated multivariate singular
normal distribution; see De Waal et al. (2011, pp. 318ff) or Tempelman (2007).

Table 5.1: Admissible edit operations for the simulation study.

name operation associated type of error pg wg

FH1 impute x1 erroneous value of x1 0.10 2.20

FH2 impute x2 erroneous value of x2 0.08 2.44

FH3 impute x3 erroneous value of x3 0.06 2.75

FH4 impute x4 erroneous value of x4 0.04 3.18

FH5 impute x5 erroneous value of x5 0.02 3.89

IC34 interchange x3 and x4 true values of x3 and x4
interchanged

0.07 2.59

TF21 transfer an amount from
x2 to x1

part of the true value of
x1 reported as part of x2

0.09 2.31

CS4 change the sign of x4 sign error in x4 0.11 2.09

CS5 change the sign of x5 sign error in x5 0.13 1.90

Table 5.1 lists the nine admissible edit operations that were considered in this
study. Note that the first five lines contain the FH operations for this data set.
As indicated in the table, each edit operation has an associated type of error. A
synthetic data set to be edited was created by randomly adding errors of these types
to the above-mentioned error-free data set. The probability of each type of error is
listed in the fourth column of Table 5.1. The associated “ideal” weight according
to (5.7) is shown in the last column.

To limit the amount of computational work, I only considered records that re-
quired three edit operations or less. Records without errors were also removed.
This left 1, 025 records to be edited, each containing one, two, or three of the er-
rors listed in Table 5.1.

Several error localisation approaches were applied to this data set. First of all,
I tested error localisation according to the Fellegi-Holt paradigm (i.e., using only
the edit operations FH1–FH5) and according to the new paradigm (i.e., using all
edit operations in Table 5.1). Both approaches were tested once using the “ideal”
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weights listed in Table 5.1 and once with all weights equal to 1 (“no weights”). The
latter case simulates a situation where the relevant edit operations would be known,
but not their respective frequencies. Finally, to test the robustness of the new error
localisation approach to a lack of information about relevant edit operations, I also
applied this approach with one of the non-FH operations in Table 5.1 missing from
the set of admissible edit operations.

The quality of error localisation was evaluated in two ways. Firstly, I evaluated
how well the optimal paths of edit operations found by the algorithm matched the
true distribution of errors, using the following contingency table for all 1, 025×9 =

9, 225 combinations of records and edit operations:

edit operation edit operation
was suggested was not suggested

associated error occurred TP FN
associated error did not occur FP TN

From this table, I computed indicators that measure the proportion of false nega-
tives, false positives, and overall wrong decisions, respectively:

α =
FN

TP + FN
; β =

FP

FP + TN
; δ =

FN + FP

TP + FN + FP + TN
.

Similar indicators are discussed by De Waal et al. (2011, pp. 410–411). I also
computed ρ̄ = 1−ρ, with ρ the fraction of records in the data set for which the error
localisation algorithm found exactly the right solution. A good error localisation
algorithm should have low scores on all four indicators.

It should be noted that the above quality indicators put the original Fellegi-Holt
approach at a disadvantage, as this approach does not use all the edit operations
listed in Table 5.1. Therefore, I also calculated a second set of quality indicators α,
β, δ, and ρ̄ that look at erroneous values rather than edit operations. In this case,
α measures the proportion of values in the data set that were affected by errors
but left unchanged by the optimal solution of the error localisation problem, and
similarly for the other measures.

Table 5.2 displays the results of the simulation study for both sets of quality
indicators. In both cases, a considerable improvement in the quality of the error
localisation results is seen for the approach that used all edit operations, compared
to the approach that used only FH operations. In addition, leaving one relevant edit
operation out of the set of admissible edit operations had a negative effect on the
quality of error localisation. In some cases this effect was quite large – particularly
in terms of edit operations used –, but the results of the new error localisation
approach still remained substantially better than those of the Fellegi-Holt approach.
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Contrary to expectation, not using different confidence weights actually improved
the quality of the error localisation results somewhat for this data set under the
Fellegi-Holt approach (both sets of indicators) and to some extent also under the
new approach (only the second set of indicators). Finally, it is seen that using all
edit operations led to an increase in computing time compared to using only FH
operations, but this increase was not dramatic.

5.8 Conclusion

In this chapter, a new formulation was proposed of the error localisation problem in
automatic editing. It was suggested to find the (weighted) minimal number of edit
operations needed to make an observed record consistent with the edits. The new
error localisation problem can be seen as a generalisation of the problem proposed
in a seminal paper by Fellegi and Holt (1976), because the operation that imputes a
new value for one variable at a time is an important special case of an edit operation.

The main focus here has been on developing the mathematical theory behind
the new error localisation problem. It turns out that FM elimination, a technique
that has been used in the past to solve the Fellegi-Holt-based error localisation
problem, can be applied also in the context of the new problem (Section 5.5). Nev-
ertheless, the task of solving the new error localisation problem is challenging from
a computational point of view, at least for the numbers of variables, edits, and edit
operations that would be encountered in practical applications at statistical insti-
tutes. A possible error localisation algorithm was outlined in Section 5.6. More
efficient algorithms probably could and should be developed. Similarly to FM
elimination, it may be possible to adapt other ideas that have been used to solve the
Fellegi-Holt-based problem to the generalised problem considered here.

The discussion in this chapter was restricted to numerical data and linear edits.
The original Fellegi-Holt paradigm has been applied also to categorical and mixed
data. Several authors, including Bruni (2004) and De Jonge and Van der Loo
(2014), have shown that a large class of edits for mixed data can be re-formulated
in terms of numerical data and linear edits, with the additional restriction that some
of the variables have to be integer-valued. In principle, this means that the results
in this chapter could be applied also to mixed data. To accommodate the fact that
some variables are integer-valued, Pugh (1992)’s extension of FM elimination to
integers could be used; see also De Waal et al. (2011) for a discussion of this ex-
tended elimination technique in the context of Fellegi-Holt-based error localisation.
It remains to be seen whether this approach is computationally feasible.

Remark 4 in Section 5.4 hinted at an analogy between error localisation in sta-
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tistical microdata and the field of approximate string matching. In approximate
string matching, text strings are compared under the assumption that they may
have been partially corrupted (Navarro, 2001). Various distance functions have
been proposed for this task. The Hamming distance, which counts the number of
positions on which two strings differ, may be seen as an analogue of the Fellegi-
Holt-based target function (5.2). The generalised error localisation problem de-
fined in this chapter has its counterpart in the use of the Levenshtein distance or
“edit distance” for approximate string matching. It may be interesting to explore
this analogy further. In particular, efficient algorithms have been developed for
computing edit distances between strings; it might be possible to apply some of the
underlying ideas also to the generalised error localisation problem.

The new error localisation algorithm was applied successfully to a small syn-
thetic data set (Section 5.7). Overall, the results of this simulation study suggest
that the new error localisation approach has the potential to achieve a substantial
improvement of the quality of automatic editing compared to the approach that is
currently used in practice. However, this does require that sufficient information be
available to identify all – or at least most – of the relevant edit operations in a par-
ticular application. Possible gains in the quality of error localisation also have to be
weighed in practice against the higher computational demands of the generalised
error localisation problem.

An obvious candidate for applying the new methodology in practice would
be the SBS. However, more research is needed before this method could be ap-
plied during regular production. To apply the method in a particular context, it is
necessary first to specify the relevant edit operations. Ideally, each edit operation
should correspond to a combination of amendments to the data that human editors
consider to be a correction for one particular error. In addition, a suitable set of
weights wg has to be determined for these edit operations. This would require in-
formation about the relative frequencies of the most common types of amendments
made during manual editing. Both aspects could be investigated based on historical
data before and after manual editing, editing instructions and other documentation
used by the editors, and interviews with editors and/or supervisors of editing.

On a more fundamental level, a question of demarcation arises between de-
ductive correction methods and automatic editing under the new error localisation
problem. In principle, many known types of error could be resolved either by auto-
matic correction rules or by error localisation using edit operations. Each approach
has its own advantages and disadvantages (Scholtus, 2014a). It is likely that some
compromise will produce the best results, with some errors handled deductively
and others by edit operations. However, it is not obvious how best to make this
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division in practice.

Ultimately, the aim of the new methodology proposed in this chapter is to im-
prove the usefulness of automatic editing in practice. So far, the results are promis-
ing.

Appendix 5.A Fourier-Motzkin elimination

Consider a system of linear constraints (5.1) and let xf be the variable to be elimi-
nated. First, suppose that xf is involved only in inequalities. For ease of exposition,
suppose that the edits are normalised so that all inequalities use the ≥ operator. The
FM elimination method considers all pairs (r, s) of inequalities in which the coef-
ficients of xf have opposite signs; that is, arfasf < 0. Suppose without loss of
generality that arf < 0 and asf > 0. From the original pair of edits, the following
implied constraint is derived:

p∑
j=1

a∗jxj + b∗ ≥ 0, (5.23)

with a∗j = asfarj − arfasj and b∗ = asfbr − arfbs. Note that a∗f = 0, so xf is
not involved in (5.23). An inequality of the form (5.23) is derived from each of the
above-mentioned pairs (r, s). The full implied system of constraints obtained by
FM elimination now consists of these derived constraints, together with all original
constraints that do not involve xf .

If there are linear equalities that involve xf , the above technique could be ap-
plied after replacing each linear equality by two equivalent linear inequalities. De
Waal and Quere (2003) suggested a more efficient alternative for this case. Sup-
pose that the rth constraint in (5.1) is an equality that involves xf . This constraint
can be rewritten as

xf =
−1

arf

br +∑
j ̸=f

arjxj

 . (5.24)

By substituting the expression on the right-hand-side of (5.24) for xf in all other
constraints, one again obtains an implied system of constraints that does not involve
xf and that can be rewritten in the form (5.1).

For a proof that FM elimination has the fundamental property mentioned in
Section 5.2, see, e.g., De Waal et al. (2011, pp. 69–70).
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Appendix 5.B A small example

As an illustration of the algorithm of Section 5.6, consider the following small-
scale example. Suppose that the following linear edits are defined:

x1 + x3 = 19, (5.25)

x1 ≥ 4, (5.26)

x1 ≤ 7, (5.27)

x3 − x1 ≥ 5, (5.28)

x3 − x1 ≤ 10, (5.29)

x3 ≥ 0. (5.30)

Note: The two numerical variables are denoted by x1 and x3 here to be consis-
tent with the notation in Scholtus (2014a), where a more elaborate version of this
example is described that also includes the variable x2.

The record (x1, x3) = (10,−3) requires editing as it fails edits (5.25), (5.27),
(5.28), and (5.30). Suppose that the following edit operations of the form (5.4) are
admissible:

• the FH operation FH1 that imputes variable x1;

• the FH operation FH3 that imputes variable x3;

• an edit operation CS1 that changes the sign of x1;

• an edit operation TF13 that transfers an amount of at most K = 15 units
between x1 and x3 (in either direction).

Representations of these edit operations in matrix-vector notation can be derived
from the examples given in Section 5.3. Suppose in addition that the weights of
the admissible edit operations are chosen as follows:

edit operation FH1 FH3 CS1 TF13
weight 1 3 0.5 1

The algorithm in Figure 5.1 can be applied to find the optimal solution to Prob-
lem 5.1 for this record. In step 0 of the algorithm, G is defined as the set that
contains FH1, FH3, CS1, and TF13, L is defined to be the empty set, and W is
initialised at ∞.

In the first iteration (t = 1), the algorithm considers subsets of one edit oper-
ation from G. There are four such subsets and they all satisfy the two conditions
of step 1. (Note that the first condition is irrelevant when t = 1.) For each of the
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paths [FH1], [FH3], [CS1], and [TF13], the theory of Section 5.5 can be used to
check whether it leads to a consistent record with respect to (5.25)–(5.30) when
applied to the original record (x1, x3) = (10,−3).

As mentioned at the end of Section 5.5, for paths that contain only FH opera-
tions, the procedure defined in that section is equivalent to applying FM elimination
directly to the variables associated with these operations. Thus, to check whether
the path [FH1] is a feasible solution, one should remove x1 from the edits (5.25)–
(5.30) by FM elimination. After some simplification, this yields the following
implied constraints for x3:

x3 ≥ 12, (5.31)

2x3 ≤ 29. (5.32)

Upon substituting the original value x3 = −3, it is seen that (5.31) is failed. Hence,
the path [FH1] is not a feasible solution to the error localisation problem. Similarly,
by eliminating x3 from the original edits (5.25)–(5.30) and substituting x1 = 10, it
is found that the path [FH3] is not a feasible solution either.

For the path [CS1], the theory from Section 5.5 could be applied. However,
edit operation CS1 (which just changes the sign of x1) is clearly weaker than FH1
(which can impute any value for x1). Since it was already seen that [FH1] is not a
feasible solution to the error localisation problem, it is clear that [CS1] cannot lead
to a consistent record in this example.

For the path [TF13], applying expression (5.10) (with t = 1) to the edits (5.25)–
(5.30) yields a system that includes one free parameter:

x1 + x3 = 19,

x1 + α ≥ 4,

x1 + α ≤ 7,

x3 − x1 − 2α ≥ 5,

x3 − x1 − 2α ≤ 10,

x3 − α ≥ 0,

α ≥ −15,

α ≤ 15.

Note that the last two inequalities are constraints of the form (5.5) that follow from
the definition of TF13. By eliminating α from this system, an implied system of
edits is found for x1 and x3. It turns out that the original values x1 = 10 and
x3 = −3 do not satisfy this implied system, so the single edit operation TF13 does
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not lead to a consistent record either. This conclusion also follows directly from
the first constraint above, since x1 + x3 ̸= 19 independently of α.

In summary, applying single edit operations from G does not yield a feasi-
ble solution in this example. At the end of the first iteration, it holds that B1 =

{{FH1} , {FH3} , {CS1} , {TF13}}, L = ∅, and W = ∞.

In the next iteration, t = 2. There are
(
4
2

)
= 6 distinct subsets of two edit

operations in this example:

{FH1,FH3} , {FH1,CS1} , {FH1,TF13} ,
{FH3,CS1} , {FH3,TF13} , {CS1,TF13} .

Since no feasible solutions were found in the first iteration, all of these subsets
satisfy the first condition of step 1. They also satisfy the second condition. For each
of these subsets G, the set P ((10,−3)′;G) contains two ordered paths. However,
it can be shown that for the first five subsets listed above, the two ordered paths are
equivalent as defined at the end of Section 5.6, so they do not have to be considered
separately; see Scholtus (2014a) for more details. The only pair of non-equivalent
paths is found to be [CS1,TF13] and [TF13,CS1]. Thus, in total, seven paths (out
of a potential twelve) need to be evaluated in this iteration. For the sake of brevity,
I discuss only two of these evaluations in detail.

For the path [FH1,FH3], which uses only FH operations, the checking proce-
dure is equivalent to eliminating x1 and x3 from the original edits (5.25)–(5.30).
Eliminating x1 yields (5.31) and (5.32), as seen above. Eliminating x3 from this
pair of implied edits yields the trivially true statement 0 ≥ −5. The fact that this
statement is true implies, by the fundamental property of FM elimination, that there
exists a value for x3 that satisfies the edits (5.31) and (5.32). (It is not difficult to
see that this is indeed the case.) By another application of the fundamental prop-
erty, this in turn implies that there exist values for x1 and x3 that satisfy the edits
(5.25)–(5.30). Hence, it follows that imputing x1 and x3 (i.e., the path [FH1,FH3])
is a feasible solution to the error localisation problem here. The path length asso-
ciated with this solution is 4. If the original Fellegi-Holt paradigm were used, this
would be the optimal solution to the error localisaton problem.

Now consider the path [FH1,TF13]. To see whether this path leads to a feasible
solution, I apply the transformation (5.10) (with t = 2) to the edits (5.25)–(5.30),
with T1, S1 and c1 coming from the definition of FH1, and T2, S2 and c2 coming
from the definition of TF13. This yields the following system of constraints, with
the parameter α1 introduced by FH1 and the parameter α2 introduced by TF13.
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(Again, the last two restrictions are added from the definition of TF13.)

x3 + α1 = 19, (5.33)

α1 + α2 ≥ 4, (5.34)

α1 + α2 ≤ 7, (5.35)

x3 − α1 − 2α2 ≥ 5, (5.36)

x3 − α1 − 2α2 ≤ 10, (5.37)

x3 − α2 ≥ 0, (5.38)

α2 ≥ −15, (5.39)

α2 ≤ 15. (5.40)

The two parameters have to be eliminated from (5.33)–(5.40). Elimination of α1

yields the following non-redundant edits:

x3 − α2 ≥ 12,

2x3 − 2α2 ≤ 29,

α2 ≥ −15,

α2 ≤ 15.

Elimination of α2 from this system yields, upon simplification:

x3 ≥ −3,

2x3 ≤ 59.

It is seen that the original value x3 = −3 satisfies this system of implied edits.
Therefore, I conclude that a consistent record can be obtained by applying the edit
operations FH1 and TF13 to (x1, x3) = (10,−3). The associated path length is 2,
which is an improvement compared to the solution found previously.

The other five paths mentioned above may be handled similarly. The remaining
paths yield just one additional feasible solution, given by the path [FH3,TF13].
This solution has a path length of 4. At the end of the second iteration, it holds
that: B2 = {{FH1,CS1} , {FH3,CS1} , {CS1,TF13}}, L = {[FH1,TF13]}, and
W = 2.

In the next iteration (t = 3), the algorithm is stopped, because none of the sub-
sets of three edit operations from G satisfies the first criterion of step 1. Thus, the
optimal solution returned by the algorithm is: “impute x1 and transfer an amount
between x1 and x3”. The corresponding distance d ((10,−3)′, D0) equals 2. In
addition, two suboptimal feasible solutions were found by the algorithm, both with
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path length 4: “impute x1 and impute x3” and “impute x3 and transfer an amount
between x1 and x3”. Note that, for all three solutions, the order in which the two
edit operations are applied does not matter.

It is interesting to work out which consistent records can be reached from the
original record by these feasible paths of edit operations. I start with the (subopti-
mal) solution that uses both FH operations, because this is the easiest case. Denote
the imputed values under this solution by x∗1 and x∗3 and suppose that x∗1 = 7 − β

for some, as yet unspecified, parameter β. By equation (5.25), x∗3 = 12 + β. Fur-
thermore, by (5.31) and (5.32), it has to hold that 0 ≤ β ≤ 5/2. In summary, the
potential consistent records that can be reached by imputing both x1 and x3 in this
example are (x∗1, x

∗
3) = (7− β, 12 + β), for 0 ≤ β ≤ 5/2.

For the optimal solution “impute x1 and transfer an amount between x1 and
x3”, the amended record has the form (x∗1, x

∗
3) = (α1 + α2,−3 − α2), where the

parameters (α1, α2) have to satisfy the system of restrictions found by substituting
x3 = −3 in (5.33)–(5.40). From (5.33), it follows immediately that α1 = 22. The
remaining restrictions for α2 are satisfied only when α2 = −15. Thus, for this
solution, the edits determine unique feasible values for the parameters. The unique
amended record is found to be (x∗1, x

∗
3) = (7, 12). This is a special case of the

solution found previously, with β = 0. Hence, the optimal solution “impute x1 and
transfer an amount between x1 and x3” is found to be more restrictive than “impute
x1 and impute x3”. In a similar way, it can be shown that the other feasible (but
suboptimal) solution found above – “impute x3 and transfer an amount between x1
and x3” – is not more restrictive than “impute x1 and impute x3”; i.e., every record
of the above form with 0 ≤ β ≤ 5/2 can be reached using these edit operations.

Figure 5.2 summarises the results for this example in graphical form. The
boundary of the region defined by each edit from (5.25)–(5.30) is plotted as a solid
line in the (x1, x3) plane. The feasible region defined jointly by these edits is
shown as the bold line segment AB, with A = (9/2, 29/2) and B = (7, 12); note
that AB contains precisely all points of the form (x1, x3) = (7− β, 12 + β) with
0 ≤ β ≤ 5/2. The original record (x1, x3) = (10,−3) is plotted as point C. This
point does not lie on the line segment AB, since it corresponds to an inconsistent
record.

As was derived algebraically above, the Fellegi-Holt-based solution “impute
x1 and impute x3” can be used to reach any point E on the line segment AB (in
fact, any point in R2) from C, by varying the imputed values. One potential path,
shown in Figure 5.2, consists of the line segment CD (i.e., an imputation for x3)
followed by DE (i.e., an imputation for x1). The suboptimal solution “impute
x3 and transfer an amount between x1 and x3” also reaches any point on AB; a
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Figure 5.2: Illustration of three feasible solutions in the (x1, x3) plane.

140



5.B. A small example

potential path is shown as CF (i.e., a transferred amount from x1 to x3) followed
by FE (an imputation for x3). The optimal solution “impute x1 and transfer an
amount between x1 and x3” reaches only the point B. The corresponding path
is displayed as CG (a transferred amount from x1 to x3; note that the maximal
allowed amount K = 15 is needed here) followed by GB (an imputation for x1).

In terms of distances, it holds that d(C,B) = 2 and d(C,E) = 4 for all points
E ̸= B onAB. Apparently, for the weights chosen in this example, it is considered
better to adjust C towards B than towards any other point on AB.
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Chapter 6

Estimating the Validity and Bias
of Administrative and Survey
Variables

This chapter was co-authored by Bart F. M. Bakker (Statistics Netherlands, VU University) and

Arnout van Delden (Statistics Netherlands). Author contributions: all authors contributed ideas; Van

Delden and Scholtus set up the data for the application; Scholtus developed the mathematical part of

the work, carried out the analysis and wrote the report; Bakker and Van Delden edited the report. An

earlier version of this chapter was published by Statistics Netherlands as Scholtus et al. (2015). The

contents of this chapter have been submitted for publication.

6.1 Introduction

In recent years, the use of administrative data has grown in official statistics as
well as in academic research (Bethlehem, 2008; Bakker and Daas, 2012). Govern-
mental organisations, such as tax authorities, social security offices, and munici-
palities, collect data on a large number of social and economic phenomena as part
of their regular activities. In many countries, national statistical institutes (NSIs)
and other producers of official statistics have access to these administrative data
sources. Many NSIs are looking at ways to use administrative data to reduce –
and ideally replace – their own data collection by means of questionnaires. Rea-
sons for this include tighter budgets and a decreasing willingness of persons and
businesses to participate in surveys. Administrative data also offer possibilities for
more detailed statistical analyses than surveys based on relatively small samples.

When examining the suitability of a given administrative source for statistical
purposes, several questions need to be addressed (Bakker, 2011b; Zhang, 2012).
In this chapter, we will focus on issues related to the quality of measurement. In
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general, all data sources may contain errors. In the case of administrative data,
a particular source of error arises from potential differences between the variable
that is measured for administrative purposes and the variable that is needed for
statistical purposes.

To give an example, European NSIs are supposed to publish short-term statis-
tics on Turnover as defined in the short-term statistics regulation (European Com-
mission, 2006). The tax authorities in the Netherlands also collect information on
Turnover from businesses to levy value-added tax (VAT). Conceptually, these two
Turnover variables are not the same for all businesses; for instance, some economic
activities are included in ‘statistical’ Turnover but exempt from taxes. (We will re-
turn to this example in the application below.) It is, therefore, important to assess
the measurement quality of administrative variables for statistical use (Bakker and
Daas, 2012; Groen, 2012).

In the context of questionnaire design, there is a well-established tradition of
using linear structural equation models (SEMs) to assess the measurement quality
of survey variables; key references include Andrews (1984); Saris and Andrews
(1991); Scherpenzeel and Saris (1997); Saris and Gallhofer (2007); Alwin (2007).
The models used in this approach can be seen as an extension of the classical
test theory from psychology as set out by Lord and Novick (1968) and Jöreskog
(1971). Each observed variable is modelled as an imperfect measure of an un-
derlying latent (unobserved) variable. To quantify the measurement quality of an
observed variable, one can estimate its validity which, under the simplest model, is
defined as its standardised factor loading on the underlying latent variable (see Sec-
tion 6.2). These models are usually identified by taking repeated measurements on
each target variable, which requires a carefully-planned research design. It should
also be noted that SEMs require variables that are measured on an interval scale or
higher. For nominal and ordinal variables, latent class models are more appropriate
(Biemer, 2011).

Applying the same modelling approach to administrative data is not straight-
forward. As administrative data are collected by an external party, it is usually not
possible to conduct methodological experiments. Bakker (2012) suggested that
repeated measurements may be obtained by linking an administrative data set to
data from an independent sample survey. This is useful in particular for exam-
ining whether questions in an existing survey can be replaced by corresponding
administrative variables, at least in terms of validity. Similarly, Pavlopoulos and
Vermunt (2015) and Oberski (2017) have used latent class models to compare the
amount of classification error in categorical administrative and survey variables.
An important advantage of approaches that use latent variables is that they do not
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assume that either the administrative or the survey data are error-free. In fact, it is
not necessary to know in advance which source provides the measurement with the
highest validity: this is estimated from the data.

While validity captures the correlation of an observed variable to the underly-
ing concept, producers of official statistics are often interested in population means
or totals. Therefore, in addition to the validity, it may be important to know whether
any substantial measurement bias occurs in the levels of individual variables (so-
called intercept bias). The main objective of the present chapter is to extend the
approach using SEMs to also assess the bias of an administrative variable. To il-
lustrate, we describe an application at Statistics Netherlands to assess the validity
and intercept bias of VAT Turnover for short-term statistics.

The remainder of this chapter is organised as follows. Section 6.2 describes the
proposed methodology for estimating the validity and intercept bias of observed
variables. The above-mentioned application to VAT Turnover is discussed in Sec-
tion 6.3. Section 6.4 closes the chapter with a discussion of the possibilities and
limitations of the proposed method. While the main focus of this chapter is on
evaluating the measurement quality of administrative data, some potential other
applications are also outlined in Section 6.4.

6.2 Methodology

6.2.1 Assessing validity and intercept bias using SEMs

Let y1, . . . , yp denote a set of observed variables that may be affected by mea-
surement errors, and let η1, . . . , ηm denote the underlying variables of interest that
are error-free and not observed directly. The relationship between each observed
and unobserved variable, as well as the relations that exist among the unobserved
variables, may be described by an SEM.

For our purposes here, an SEM may be defined as a system of linear regression
equations:

ηj = αj +
∑
j′ ̸=j

βjj′ηj′ + ζj , (j = 1, . . . ,m), (6.1)

yk = τk + λkηjk + ϵk, (k = 1, . . . , p). (6.2)

Equations of the form (6.1) are structural equations relating the unobserved vari-
ables to each other: the coefficient βjj′ represents a direct effect of ηj′ on ηj , ζj
represents a zero-mean disturbance term, and αj represents a structural intercept.
Equations of the form (6.2) are measurement equations relating an observed yk to
an unobserved ηjk in terms of a factor loading λk, a measurement intercept τk, and
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a zero-mean measurement error ϵk that is uncorrelated with ηjk . Observed vari-
ables act as indicators for latent variables. Note that latent variables often have
more than one indicator. By contrast, we restrict attention in this chapter to SEMs
in which each observed variable loads on exactly one latent variable. More general
SEMs that do not have this restriction are discussed, e.g., by Bollen (1989).

The SEM given by (6.1)–(6.2) contains the following parameters: αj , βjj′ , τk,
λk, ψjj′ = cov(ζj , ζj′), and θkl = cov(ϵk, ϵl). It is standard practice to restrict
some of these to zero a priori, based on substantive considerations. Provided that
the model is identified, the unknown parameters can be estimated from the ob-
served variance-covariance matrix and the observed vector of means of y1, . . . , yp;
see Section 6.2.2. The absolute value of the standardised factor loading

|λsk| ≡ |λk|
sd(ηjk)
sd(yk)

=

√
1− var(ϵk)

var(yk)
(6.3)

may be used as a measure of the validity1 of yk (Bakker, 2012). The intercept bias
of yk may be evaluated in terms of the parameters τk and λk. Having estimated the
model, we can derive formulae to correct each observed variable to the scale of the
corresponding error-free variable; see Section 6.2.4 for more details.

By linking administrative data to survey data, one will usually obtain at most
two indicators per latent variable (Scholtus and Bakker, 2013a). The smallest SEM
that is then identified has m = 2 correlated latent variables with two indicators
each. If covariates are available that are considered to be measured (essentially)
without error, these can also be included in the model to obtain identification. In
addition, identification of any SEM with latent variables requires that each latent
variable be given a scale and, if the model contains intercept terms, that the origins
of these scales be fixed as well. When one is interested only in the validity, identi-
fication may be achieved by standardising each latent variable to have mean 0 and
variance 1. However, this is not an option if the intercept bias is to be evaluated.
In fact, none of the standard SEM identification procedures [see Little et al. (2006)
for an overview] is then suitable because, as argued by Bielby (1986a), these pro-
cedures define an ‘arbitrary’ metric for the latent variables.

A procedure for achieving model identification in a ‘non-arbitrary’ way was
suggested by Sobel and Arminger (1986) and discussed in the present context by
Scholtus (2014b). The basic idea is to collect additional ‘gold standard’ data on
each latent variable for a random subsample of the original data set. Many of

1In the terminology of Saris and Andrews (1991), |λs
k| measures the indicator validity of yk.

This is actually the product of its ‘pure’ validity and its reliability as defined by Saris and Andrews
(1991). Biemer (2011) uses the terms empirical and theoretical validity instead of indicator validity
and ‘pure’ validity, respectively. This point is taken up in Section 6.4.
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the variables encountered in official statistics are factual (e.g., Age, Educational
attainment, Turnover, Number of employees), so that it is theoretically possible to
obtain the true score for each unit. In practice, it is usually prohibitively expensive
or otherwise inconvenient to do so for the entire population or even for a sizeable
sample. But it may often be feasible to obtain ‘gold standard’ data for a small
subsample of units. Provided that this audit sample is obtained by randomised
selection from the original data set, we can use it to assign a ‘non-arbitrary’ metric
to the latent variables, thereby identifying the SEM. We can still use the entire data
set to estimate the model parameters in terms of this metric.

Figure 6.1 shows an example of a path diagram of an SEM that is identified in
this way, having m = 3 latent variables with two indicators each (outside the audit
sample). The task of estimating this model can be cast as a missing-data problem
that may be solved by fitting a two-group SEM; see Section 6.2.3. Results on
simulated data in Scholtus (2014b) suggested that a relatively small audit sample
of 50 units may often be sufficient.

In practice, the ‘gold standard’ data could be obtained by some form of re-
editing by subject-matter experts, as was done in a different context by Nordbotten
(1955). In Figure 6.1 and throughout this chapter, it is assumed that the audit data
do not contain any measurement errors: in (6.2) for these variables, τ = 0, λ = 1,
and var(ϵ) = 0. In fact, the model can be identified by the audit sample also
when var(ϵ) ̸= 0 but the other two assumptions do hold. In that case, the ‘gold
standard’ data are supposed to contain only measurement errors that do not affect
the scale of measurement. While this assumption is theoretically weaker than the
assumption of no errors, it is not necessarily more plausible in practice. When
the ‘gold standard’ data are obtained by re-editing, it actually seems less plausible
from a practical point of view.

6.2.2 Estimating an SEM

Let µ = (µ1, . . . , µp)
′ and Σ = (σkl) denote, respectively, the population mean

vector and population variance-covariance matrix of the observed variables in the
SEM. That is, µk = E(yk) and σkl = cov(yk, yl). Under the model given by (6.1)–
(6.2), these moments are expressible in terms of the unknown model parameters:
µ = µ(ϑ) and Σ = Σ(ϑ), with ϑ a vector containing all distinct parameters
(Bollen, 1989).

For a given sample of size n, let ȳ and S denote the empirical means and
covariances of y1, . . . , yp. A conventional way to estimate ϑ is by minimising a
certain distance function FML between (ȳ,S) and (µ(ϑ),Σ(ϑ)), which leads to
maximum likelihood (ML) estimation if the sample consists of independent, identi-
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(group 1: audited units)

(group 2: other units)

Figure 6.1: Example of a two-group SEM identified by means of an audit sample. The
model for the first group contains additional error-free variables that are observed only in
the audit sample. The structural part of the model is shown in grey.
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cally distributed (i.i.d.) observations from a multivariate normal distribution. This
method of estimation also produces asymptotic standard errors for the estimated
parameters, as well as a test statistic that can be used as a measure of overall fit:
under the above assumption of normality, X2

ML = (n − 1)FML should follow a
chi-square distribution with known degrees of freedom if the model holds. More
details are given in Appendix 6.A.1 and in Bollen (1989).

In many practical applications, including the VAT application to be discussed in
Section 6.3, the assumption of having i.i.d. observations from a normal distribution
is not satisfied. Firstly, the data may come from a different (unknown) distribution.
In this situation, it can be shown that minimising FML still produces a consistent
point estimator for ϑ under mild conditions, but the estimated standard errors are
typically incorrect and the above test statistic need not follow a chi-square distri-
bution. It is known how to obtain asymptotically correct standard errors (Satorra,
1992; Muthén and Satorra, 1995); see also Appendix 6.A.1. A correction to the
chi-square test statistic was proposed by Satorra and Bentler (1986, 1994). The
resulting corrected statistic is denoted by X2

SB here. The terms Robust Maximum
Likelihood and Pseudo Maximum Likelihood (PML) are used to refer to this esti-
mation strategy when the data are not normally distributed.

Secondly, the above assumption is violated when the sample is obtained by
some complex survey design, possibly involving:

• without-replacement sampling from a finite population;

• stratification;

• clustering; and/or

• multi-stage selection.

In this case, to obtain a consistent point estimator, one should use design-consistent
estimates of µ and Σ in place of ȳ and S. After this adjustment, essentially the
same results apply as in the i.i.d. case with non-normal data (Muthén and Satorra,
1995). Thus, the same PML approach may be used to obtain corrected standard
errors and test statistics. Some more details are given in Appendix 6.A.1. In the
application to be discussed below, we used PML estimation to account for both
phenomena: non-normal data and finite-population sampling.

Many software packages are available for estimating SEMs, including LIS-
REL, EQS, and Mplus. For the analyses in this chapter, we made use of two
packages from the R environment for statistical computing (R Development Core
Team, 2017): the package lavaan (Rosseel, 2012) which contains the basic
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functionality for estimating a variety of latent variable models and the package
lavaan.survey (Oberski, 2014) which implements the PML approach for SEM
estimation with complex samples.

6.2.3 Incorporating the audit sample

In theory, the estimation of an SEM that is identified by means of an audit sample
is straightforward. Consider the example in Figure 6.1. We set up a two-group
SEM, where the first group contains the n1 observations from the audit sample and
its model is defined in terms of the observed variables y1, . . . , y9, while the second
group contains the n−n1 remaining observations and its model is defined in terms
of y1, . . . , y6 alone. In the first group, the model is identified by assuming that
y7 = η1, y8 = η2, and y9 = η3. The model for the second group is identified by
restricting all parameters of the overlapping part of the model to be equal in both
groups; this makes sense if the audit sample is a random subsample of the original
data.2

In practice, some complications arise because all standard software packages
that can estimate multi-group SEMs require that the same set of observed variables
be used in each group. Thus, in the example of Figure 6.1 we need to account for
the missing data for y7, y8, y9 in the second group.

Allison (1987) proposed a general-purpose method for estimating SEMs with
missing data, which provides ML estimates provided that the data are i.i.d. multi-
variate normal and the missing values are Missing At Random (MAR) in the ter-
minology of Little and Rubin (2002). In the context considered here, the data are
missing by design (i.e., the design of the audit sample) and we can ensure that the
MAR condition is satisfied. Baumgartner and Steenkamp (1998) described an ex-
tension of Allison’s method that is usable in combination with the PML approach
of Section 6.2.2, so that the condition of multivariate normality can be dropped.
This method involves imputing random values from a normal distribution for the
missing variables in the second group, in such a way that the observed means of
these variables are identically zero, the observed variances are identically one, and
the observed covariances with all other variables are zero. In the model for the
second group, the measurement equations y7 = ϵ7, y8 = ϵ8, and y9 = ϵ9 are in-

2To identify the model, it is in fact sufficient to restrict only the parameters of the measurement
model to be invariant across groups; the structural parameters could be estimated freely. In practice,
the model fit will improve if these parameters are left free across groups. However, this may be seen
as overfitting if the audit sample is truly a random subsample of the original data, as all differences
between the groups should then be due to sampling fluctuations. Having a separate structural model
in each group would also complicate the derivation of a correction formula for the observed variables
(see Section 6.2.4). We therefore restrict all overlapping parameters to be invariant.
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cluded. In addition, we fix θ77 = θ88 = θ99 = 1 for this group. Basically, this
ensures that the observed means and covariances for y7, y8, y9 in the second group
are exactly reproduced while the estimation of the rest of the model is not affected
by the imputed values. Because some of the observed moments are now fixed by
design, some care must be taken in defining the correct degrees of freedom for the
model. See Appendix 6.A.2 for more details.

A more generally applicable way to deal with missing values in an SEM is by
multiple imputation (Oberski, 2014). We did not explore this option here.

6.2.4 Deriving a correction formula

Having estimated the SEM given by (6.1)–(6.2), we obtain for each observed vari-
able yk an estimate of the validity |λ̂sk| from (6.3) and an estimated regression line
for yk given ηjk :

ŷk = τ̂k + λ̂kηjk . (6.4)

For notational simplicity, we drop the indices k and jk in the remainder of this
section. In broad terms, we can distinguish between three cases:

(a) the validity of y is high and (τ̂ , λ̂) ≈ (0, 1);

(b) the validity of y is high but (τ̂ , λ̂) differs significantly from (0, 1);

(c) the validity of y is low.

With case (a), the observed values are strongly correlated to the true values and
there is no indication of measurement bias. Observed variables that fall under case
(c) apparently contain too much measurement error to be of use. In the remainder
of this section, we will focus on case (b), where there is a strong correlation be-
tween the observed and true values but the observed values are systematically too
high or too low. Suppose we would like to correct this measurement bias. Formula
(6.4), which predicts the value of y for a given value of η, cannot be used directly
for this purpose. Rather, we need a formula that predicts η, given the observed
values.

From the literature, it is known how to predict the true scores of the latent vari-
ables in an SEM from the observed ones; see, e.g., formula (6) in Meijer et al.
(2012). This predictor is unbiased but it involves a linear combination of (in gen-
eral) all the observed variables from the original model. In the present context,
these variables have most likely been obtained specifically for a methodological
evaluation study, e.g., by linking data from different sources, and they will typically
not all be available during regular statistical production. Consider the extreme case
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that only y itself is available. By using the linear regression model η = a+ by+ω

and expression (6.2), it may be derived that the best predictor (in a least-squares
sense) of η for an arbitrary given value y = y0 is:

η0 = µη + λ
σ2η
σ2y

(y0 − µy); (6.5)

see Scholtus et al. (2015) for details. The unknown parameters in (6.5) can all
be expressed as simple functions of ϑ (Bollen, 1989). Thus, having estimated the
original SEM, we can use the following formula for predicting η given y = y0:

η̂0 = µ̂η + λ̂
σ̂2η
σ̂2y

(y0 − µ̂y), (6.6)

with µ̂η = µη(ϑ̂), σ̂2η = σ2η(ϑ̂), etc. Furthermore, since a = µη−λ(σ2η/σ2y)µy and
b = λ(σ2η/σ

2
y) are differentiable functions of ϑ, approximate standard errors for

the estimated intercept and slope in (6.6) can be obtained by linearisation; lavaan
and most other modern SEM software packages provide this option.

A similar formula to (6.6) can be derived for predicting η from any given subset
of the observed variables in the original SEM, by considering the multiple regres-
sion of η on those variables. Such a formula may be useful in practice if several (but
not necessarily all) observed variables from the SEM are available during regular
production, for instance because they come from the same data source.

Two further remarks are in order. Firstly, it should be noted that solving (6.4)
for η directly yields η̃0 = (y0 − τ̂)/λ̂, which is not equivalent to (6.6). This
approach is invalid in general because it ignores the fact that ϵ and y are correlated.
However, η̂0 does converge to η̃0 as the validity of y approaches 1 (Scholtus et al.,
2015).

Secondly, in the context of a repeated survey (where the same set of statistics
is produced on a regular basis), it is desirable to use the same instance of formula
(6.6) to correct observations on y for measurement error in multiple survey rounds,
without the need to re-estimate the correction every time. Clearly, this requires
that the measurement model remains stable over time. In fact, the parameters a
and b also depend on µη and σ2η and could therefore change as the structural part
of the model evolves over time, even when the measurement model remains sta-
ble. However, it can be shown that this effect is negligible in practice provided
that the validity of y is high enough and the structural parameters evolve gradually
over time; see Scholtus et al. (2015). Of course, the measurement model cannot be
expected to remain stable indefinitely. Therefore, it will be necessary to update for-
mula (6.6) by conducting a new audit sample at regular intervals and/or whenever
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changes are made to the data collection process that may affect the measurement
parameters of y. In the case of administrative data, an NSI should monitor actively
whether such changes are being made by the administrative authority.

6.3 Application: Using VAT Turnover for the Netherlands’
quarterly short-term statistics

6.3.1 Introduction

From 2011 onwards, Statistics Netherlands has been publishing quarterly short-
term statistics (STS) on Turnover that are based on a combination of VAT data
for small to medium-sized businesses and a census survey for the largest and/or
most complex units (Van Delden and De Wolf, 2013). The VAT data are obtained
from tax declarations submitted to the tax authorities. The primary output of STS
consists of estimated growth rates of Turnover for different sectors of the economy
(classified by NACE code). Levels of total Turnover by sector are also estimated
and used to calibrate the Netherlands’ structural business statistics (SBS) and to
weight the contribution of each sector to the Netherlands’ national accounts. Given
the use of those level estimates, it is vital that they do not suffer from intercept bias.
The relation between VAT Turnover and STS Turnover is known to vary by type
of economic activity, depending on the specific tax regulations that apply (Van
Delden et al., 2016). Hence, direct use of the VAT data may give a distorted view
of the contribution of each sector to the economy of the Netherlands.

Van Delden et al. (2016) previously analysed the measurement quality of VAT
data by a direct linear regression of Turnover as measured in the SBS survey3 on
VAT Turnover. This analysis was done separately for each NACE group (i.e., a
stratum of units with the same NACE code). The results of these analyses were
used, in combination with qualitative knowledge on tax regulations, to decide for
each NACE group whether:

(a) VAT data could be used as a direct replacement of survey data;

(b) VAT data could be used after applying a linear correction to VAT Turnover;
or

(c) VAT data could not be used.

The correction formulae for NACE groups in class (b) followed directly from the
linear regression model [similar to formula (6.6) in this chapter, but with SBS

3The definitions of SBS and STS Turnover are identical in nearly all cases.
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Turnover taking the role of true Turnover]. Class (c) also included NACE groups
for which the analysis was inconclusive, e.g., because the results did not agree with
expectations based on the tax regulations. In fact, a drawback of linear regression
is that measurement errors in the SBS and VAT data are not explicitly taken into
account. It is well known that estimates of regression parameters may be biased in
the presence of measurement errors (Bound et al., 2001). Van Delden et al. (2016)
did use a robust regression to avoid bias due to incidental (large) errors, but this
does not provide protection against the effects of structural measurement errors.
Therefore, we decided to do an alternative analysis using an SEM to account for
potential measurement errors.

As mentioned above, the analyses in this application were done in R. The R
code can be obtained from the first author upon request.

6.3.2 Data

In this chapter, we focus on the results for four NACE groups within the sector
“Trade” listed in Table 6.1. A similar analysis was done for four NACE groups
in another sector but the results are omitted here to save space; see Scholtus et al.
(2015). For all of these NACE groups, the VAT data are currently not used to
produce STS. In addition to Turnover, we included the following concepts in the
SEM: Number of employees, Costs of purchases, and Total operating costs. All
data referred to the year 2012.

Table 6.1: Overview of NACE groups considered in this application

NACE description
45112 Sale and repair of passenger cars and light motor vehicles
45190 Sale and repair of trucks, trailers, and caravans
45200 Specialised repair of motor vehicles
45400 Sale and repair of motorcycles and related parts

For all concepts, one indicator is available from the SBS sample survey data.
As a second indicator for the Number of employees, we used the value listed in
the General Business Register (GBR) which is the population frame of business
units maintained by Statistics Netherlands. Additional indicators for the other three
variables were obtained from the Profit Declaration Register (PDR). This is an
administrative data set provided to Statistics Netherlands by the tax authorities.
Businesses are obliged to provide information to the PDR annually, but delayed
reporting is accepted by the tax authorities up to several years after the reference
period. In this study, we used the PDR data that were available by October 2014.
Finally, VAT data on Total turnover were included. Businesses usually declare

154



6.3. Application

VAT on a monthly or quarterly basis. In this study, we used the derived annual
VAT Turnover.

Table 6.2 lists the population size in each NACE group as well as the num-
ber of units for which data were available. Businesses from the group of very
large and/or complex units were excluded from this analysis, as Statistics Nether-
lands is not planning to use administrative data to replace the STS survey for this
group. The SBS data set has survey weights to account for the sampling design and
non-response. The SBS uses simple random sampling stratified by NACE group
and size class (based on number of employees in the GBR). Correction for non-
response is based on a weighting model involving NACE group, size class and
legal form.

Table 6.2: Number of units in each NACE group. All figures refer to 2012 and, apart from
the first line, to the population with large and/or complex units excluded.

NACE group 45112 45190 45200 45400
population (total) 18,680 1,790 6,054 1,763
population (w/o complex units) 18,556 1,739 6,018 1,759
SBS net sample 934 180 281 76
SBS net sample linked to admin. data 819 170 238 60
net audit sample 44 47 44 43

We could not link all units from the SBS data set to the two administrative
data sets used here (PDR and VAT), mainly because not all fiscal units from the
administrative data could be linked unambiguously to an SBS unit. In addition,
some units had missing data in the PDR or VAT data sets (unit non-response). This
explains the loss of units between the third and fourth line in Table 6.2. To account
for potential selectivity introduced in this step, we recalibrated the survey weights
within each NACE group, using a simplified version of the standard SBS weighting
model. Since SBS Turnover was available for all units in the third row of Table 6.2,
we could check whether the loss of records that were not linked to administrative
data yielded selection bias that was not corrected by reweighting, at least for our
target variable Turnover. We found no indication of such selection bias (Scholtus
et al., 2015).

The necessary ‘gold standard’ data for evaluating intercept bias were obtained
by having two senior subject-matter experts re-edit the SBS data for an audit sam-
ple of 50 units in each NACE group. The audit sample was stratified by a coarsened
version of size class, reduced to just two strata, with 25 units taken in each stratum.
The net audit sample was slightly smaller (see Table 6.2), mainly because we had
selected the audit sample before linking the SBS data to administrative data. In
addition, a few audited units turned out to be inactive or misclassified by type of
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economic activity, which means that they were not part of the target population.
All variables considered here have skew distributions. For instance, most of

the Turnover in each NACE group is concentrated among a few largest units. In
theory, the PML estimation method should account for the fact that the data are not
normally distributed. We also considered possible transformations to obtain data
that were closer to being normal, or to account for heteroskedastic measurement
errors. In some cases, this led to a slightly improved model fit (not shown here). On
the other hand, these transformations made the interpretation of the measurement
model in terms of the original variables less intuitive. We therefore decided to
work with the untransformed data in this application, since we could find a model
that fitted these data reasonably well (see below). In what follows, all financial
variables are measured in millions of Euros.

Preliminary analyses revealed that some correlations between the original SBS
data and the audited data were extremely high. This could be explained by the
fact that relatively few values were changed during the audit, combined with the
skewness of the data. These correlations close to 1 led to some computational
problems, with covariance matrices close to being singular, so that lavaan could
not estimate the parameters of the SEM. To avoid these problems, we decided to
only include SBS Turnover in the model and exclude the other SBS variables.

Figure 6.2: Path diagram of the basic model used in this application (intercepts not shown).
For the group of non-audited units, remove variables y2, y4, y6, and y10.

The path diagram of the basic SEM used here is shown in Figure 6.2. For
the structural part of the model, we used a nearly-saturated recursive model. The
direction of the arrows was prompted by accounting rules that underlie these con-
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ceptual variables: Costs of purchases (η2) is a component of Total operating costs
(η3), which in turn contributes to the Total turnover (η4); in addition, Number of
employees (η1) is closely related to Staff costs which is another component of η3.
The structural model is not fully saturated: we excluded the direct effect of η2 on
η4 because there is no substantive reason why Costs of purchases would have an
additional effect on Total turnover besides its contribution to Total operating costs.
The direct effect of Number of employees on Total turnover was included in the
initial model but fixed at zero for those NACE groups where it was found to be
insignificant.

6.3.3 Results

Table 6.3 shows the following fit measures for the final chosen model in each
NACE group: the robust chi-square test statistic X2∗

SB and robust versions of the
CFI, TLI, and RMSEA; see Appendices 6.A.2 and 6.A.3 for precise definitions
of these measures. For NACE groups 45112 and 45200, all measures indicate an
excellent fit. For NACE group 45190, the robust chi-square statistic is somewhat
high compared to the degrees of freedom and the other fit measures mostly indicate
a reasonable fit. Finally, for NACE group 45400, the overall fit is rather poor. Note
that the sample size in this last group is small, both compared to the other NACE
groups and compared to minimal sample sizes that are recommended in the SEM
literature [see, e.g., Boomsma (1982)].

Table 6.3: Fit measures for the final model

NACE group 45112 45190 45200 45400
X2∗

SB 57.5 91.0 41.0 172.9
df∗ 62 61 61 62
p value 0.637 0.008 0.977 0.000

CFI∗SB 1.000 0.966 1.000 0.925
TLI∗SB 1.001 0.966 1.034 0.927
RMSEA∗

SB 0.000 0.077 0.000 0.255

We checked the residuals of the fitted models. In cases where the overall model
fit was not very good, some large residuals did occur for the exogenous variables
Number of employees and/or Costs of purchases, but never for Turnover. Thus, to
the extent that the model may be misspecified, we assumed that these misspecifi-
cations were related only to other variables than Turnover. Moreover, results on
simulated data in Scholtus and Bakker (2013a) suggest that, for the type of SEM
considered here, the effects of local model misspecifications are not propagated
to other parts of the model. Hence, for the purpose of making valid inferences
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about the measurement quality of Turnover, we considered the fitted models to be
adequate.

Table 6.4 displays the estimated factor loadings, measurement intercepts, and
validities of Turnover as observed in VAT, PDR, and SBS. For completeness, the
full set of parameter estimates is given in Appendix 6.B. Recall that the validity
|λs| is defined by (6.3). It is seen that the validity of VAT Turnover was high
in all NACE groups considered here. On the other hand, the unstandardised λ

indicates that the observed VAT Turnover was often systematically too high or too
low compared to the true Turnover. For the intercept τ , no significant deviations
from 0 were found in these NACE groups.

Table 6.4: Parameter estimates for Turnover (with standard errors)

45112 45190 45200 45400
parameter estim. s.e. estim. s.e. estim. s.e. estim. s.e.
λ (VAT) 0.79 0.01 0.89 0.02 1.29 0.19 0.80 0.04
τ (VAT) −0.04 0.04 −0.00 0.05 −0.04 0.08 0.01 0.03
λs (VAT) 0.98 0.97 0.99 0.97
λ (PDR) 1.02 0.01 0.95 0.02 1.23 0.20 0.99 0.03
τ (PDR) 0.00 0.05 0.06 0.03 −0.02 0.08 0.00 0.01
λs (PDR) 1.00 0.98 0.99 1.00
λ (SBS) 1.01 0.01 1.01 0.00 1.21 0.19 0.98 0.02
τ (SBS) −0.01 0.05 −0.00 0.00 −0.04 0.08 0.00 0.01
λs (SBS) 0.99 1.00 0.98 1.00

Interestingly, the overall measurement quality of PDR Turnover was better than
that of VAT Turnover. Unfortunately, the PDR data cannot be used directly for
STS, because they are available only on an annual basis and because they suffer
from administrative delay as mentioned above.

For all NACE groups, a correction formula for VAT Turnover was derived as
described in Section 6.2.4. The results are shown in Table 6.5. Thus, for instance,
to correct VAT Turnover to the scale of true Turnover in NACE group 45112, the
following formula was obtained:

̂Turnover = 0.11 + 1.22× VAT Turnover.

Analogous correction formulae could be derived, if necessary, for the other ob-
served Turnover variables (SBS and PDR).

Scholtus et al. (2015) compared the results of the SEM method in this applica-
tion to those that would be obtained by the robust regression method of Van Delden
et al. (2016). In some NACE groups, the two methods yielded similar correction
formulae for VAT Turnover, while in other groups some large and significant dif-
ferences occurred, in particular for the slope parameter. In all cases, the direction
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Table 6.5: Intercept and slope of a correction formula for VAT Turnover (with standard
errors)

45112 45190 45200 45400
parameter estim. s.e. estim. s.e. estim. s.e. estim. s.e.
a (VAT) 0.11 0.05 0.07 0.06 0.04 0.06 0.01 0.03
b (VAT) 1.22 0.02 1.07 0.04 0.76 0.12 1.18 0.06

of the difference was as expected from the estimated measurement parameters of
SBS Turnover under the SEM model (Table 6.4). That is to say, for these NACE
groups the assumption of the robust regression method that SBS Turnover is a good
proxy for true Turnover was not satisfied.

6.3.4 Effect on publication figures

To conclude this section, we illustrate the effect of applying the correction formu-
lae from Table 6.5 in practice. Recall that the Netherlands’ short-term statistics on
Turnover are based on a census survey for the largest or most complex units, and
VAT data for the rest of the population. Estimates of Turnover levels (by NACE
group) are obtained by summing the observed values for all units (within a NACE
group) in both data sources, and estimated annual growth rates can be obtained as
a ratio of estimated Turnover levels for two years.4 Since no form of sampling is
involved, these estimates are affected only by non-sampling errors, such as mea-
surement errors.

Table 6.6: Effect of correction on estimated Turnover levels (2012 and 2013) and annual
growth rate (2012/2013) for the target population

45112 45190 45200 45400
2012 2013 2012 2013 2012 2013 2012 2013

Turnover (×109 Euro)
VAT 25.2 24.0 5.1 4.9 2.7 2.6 1.6 1.5
VAT adjusted 29.1 27.7 5.2 5.1 2.2 2.1 1.7 1.6
rel. difference +15% +16% +3% +3% −19% −19% +7% +7%
growth rate
VAT 0.951 0.971 0.979 0.916
VAT adjusted 0.953 0.971 0.984 0.916

Table 6.6 compares population estimates that would be obtained by using the
VAT data directly and by applying the correction formulae estimated above; we
look at annual Turnover levels for 2012 and 2013 and the corresponding annual

4The computation of growth rates in the actual statistical process is more complicated to account
for population dynamics, but we ignore this aspect here.
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growth rate. It is seen that correcting for measurement errors in the VAT data
often has a substantial effect on the estimates of Turnover levels for these NACE
groups. In other words, the uncorrected estimates seriously under- or overestimate
the contributions of many NACE groups to the economy of the Netherlands. The
effect on growth rates is much smaller and usually negligable, because the bias in
the numerator and denominator mostly cancels out.

6.4 Conclusions and discussion

6.4.1 Discussion of results

In this chapter, we explored the possibility of using structural equation modelling
to assess the measurement quality of administrative variables for statistical use.
We specifically looked at validity and intercept bias. Estimating the intercept bias
of an observed variable in a meaningful way requires the collection of additional
‘gold standard’ data for a random subsample of the original data. To illustrate the
method, we applied it to assess the suitability of VAT data on Turnover for the
Netherlands’ quarterly STS and their derived annual values.

As the method is relatively expensive and complex, it might be useful in prac-
tice to apply a staged approach. Begin by making some preliminary comparisons
between the administrative data and data from other sources (e.g., survey data), for
instance by visual inspection of scatter plots or by robust linear regression, as was
done by Van Delden et al. (2016). This preliminary analysis may already be con-
clusive in two possible ways: either by revealing that the administrative data are
only weakly correlated to the other data (in which case the data are probably not
useful), or by revealing that the two data sources contain nearly identical values
(in which case the data may be considered to have high validity, provided that the
errors in the two sources are independent). In all other cases, it seems premature to
draw conclusions about the validity of the administrative data at this stage. More-
over, nothing can be concluded at this stage about the presence of systematic bias
in either data source.

For the second stage, if the preliminary analysis is inconclusive, one may pro-
ceed with the estimation of an SEM to evaluate the validity. For this, the collection
of additional audit data is not required. If the validity turns out to be low, the
administrative data should probably not be used.

If the validity is high and one is also interested in the bias, then one may pro-
ceed to the final stage. For this stage, an audit sample is conducted. An extended
SEM can then be used to evaluate the intercept bias and, if necessary, estimate a
formula for correcting the bias. Results on simulated data in Scholtus (2014b) sug-
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gest that this method provides valid results even for small audit samples and that
the precision of the estimated SEM parameters increases slowly with the size of
the audit sample. Hence, from a cost-benefit point of view it may be reasonable to
keep the audit sample small in practice. On the other hand, the audit samples in
these simulations were selected by simple random sampling and it may in fact be
possible to obtain significant improvements in precision by optimising the design
of the audit sample. This could be an interesting topic for future research. Within
the method as discussed here, any form of probability sampling can be used to
select the audit sample so long as the design is known.

In traditional applications of SEMs to survey data, model identification is often
achieved by asking multiple variants of the same question, either within the same
interview or in a follow-up interview (Saris and Gallhofer, 2007). For panel sur-
veys, an alternative is the so-called simplex design which involves asking the same
question to the same respondents at (≥ 3) different time points (Alwin, 2007).
With administrative data sources, asking follow-up questions is almost never possi-
ble. In addition, while many longitudinal administrative data sources are available,
the recorded values often remain unchanged until an event occurs that triggers an
alteration (Bakker, 2011a). This implies that measurement errors in a single ad-
ministrative source at different time points are often strongly correlated. A more
generally applicable way to achieve model identification with administrative data
may be to link them to survey data, as we did in this chapter. This approach does
require that the data sources can be perfectly linked (no linkage errors). In practice,
there may be records that cannot be linked. In that case, one should check whether
the linked data are sufficiently representative of the population, and possibly weigh
the data to improve this.

6.4.2 Assumptions and limitations

A strong assumption of the method is that it is possible to obtain ‘gold standard’
versions of the target variables, at least for a small subsample of units. In practice,
applications where absolute levels are of concern are likely to arise only for ‘fac-
tual’ variables. For such variables, an objective true value can be determined in
principle, although the measurement procedure that is required to obtain this value
may be difficult, expensive, or otherwise inconvenient to implement in practice.
Clearly, the outcome of the method relies on the quality of the audit data. In our
application, the audit data were obtained through re-editing by subject-matter ex-
perts. An important, albeit difficult, question is whether it is realistic to consider
these data as a ‘gold standard’. As a topic for future research, it may be interesting
to investigate the re-editing process in more detail and to find out how confident the
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experts are about their decisions. It is conceivable that the quality of the audit data
actually differs by sub-population, e.g., because less information is available on
smaller units. It may also be interesting to investigate by simulation to what extent
the estimate of validity and the correction formula for intercept bias are robust to
minor violations of the assumption that the audit data do not contain measurement
error.

A limitation of the application in Section 6.3 is that the model was fitted to
data of only one year, so we could not test whether the estimated measurement
parameters change over time. It would be good to repeat the analysis on data from
a different year. Note that this would also require a new audit sample.

In the method as described here, we did not introduce any prior assumptions
about the relative measurement quality of each observed variable (apart from the
audit data). In this respect, the comparison between the validities of the variables
in this application was completely data-driven. If a researcher does have prior
knowledge about the relative merits of each data source, this could be incorporated
in the model by means of (in)equality constraints on parameters (Rosseel, 2012).
Alternatively, it may then be natural to use a Bayesian SEM (Palomo et al., 2007).

In the type of model that was used here, measurement errors are considered
to follow a continuous distribution. In practice, measurements on the same theo-
retical variable in a survey and an administrative source are sometimes found to
be exactly equal for a substantial subset of the units. This is often explained by
assuming that measurement errors in survey and administrative data are ‘intermit-
tent’, i.e., there is a non-zero probability of observing the true value. Guarnera and
Varriale (2016) consider a latent class model for measurement errors in numerical
variables which explicitly takes this property into account. An alternative inter-
pretation of the above phenomenon is that measurement errors in different sources
are correlated because the measurement procedures cannot be considered indepen-
dent. For instance, it might happen that some units simply report the same value of
Turnover in the survey that they provided previously to the tax authorities, without
going back to their original records. Correlated measurement errors can be taken
into account in the SEM framework, provided that sufficient other indicators of the
latent variables are available.

As remarked in footnote 1, the SEM in this chapter yields estimates of the so-
called indicator validity or empirical validity of the observed variables. Estimating
the theoretical validity by factoring out the reliability component requires a more
complex SEM, the so-called multitrait-multimethod model. This approach has
been applied successfully in survey questionnaire design (Scherpenzeel and Saris,
1997), but it is not readily applicable to administrative data.
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6.4.3 Potential applications

In the context of the application in Section 6.3, estimating the validity and intercept
bias was useful to help deciding whether a specific administrative source could re-
place an existing sample survey, possibly after a model-based correction. Another,
similar type of application might involve comparing several potential (administra-
tive) sources for the same target variable and choosing the best one. This could be
relevant for instance for NSIs that are moving towards a population census based
on register data (Berka et al., 2012). Of course, the decision to use or not to use an
administrative data source for statistics should be based on other criteria as well,
besides the measurement quality. See, e.g., Daas et al. (2011) for a comprehen-
sive overview of relevant quality indicators for administrative data. In addition,
the outcome of a model-based analysis should always be compared with expecta-
tions based on other, qualitative knowledge about an administrative data source.
For statistics that are already based on administrative data or mixed sources, the
method described in this chapter could be useful to quantify the influence of mea-
surement errors on published statistical results.

The multi-group SEM with an audit sample as used in this chapter can be ap-
plied to answer other research questions too. One interesting application in official
statistics might be to compare the effects of automatic editing and manual editing
on administrative or survey data (Scholtus et al., 2015). In some applications, a
model-based bias correction might replace part of the manual editing to yield a
more efficient statistical process. This alternative seems interesting in particular
for processing large administrative data sets, where even modern selective editing
methods may be too resource-demanding.

Finally, the use of an audit sample to identify an SEM may also be relevant in
some applications outside official statistics. SEMs are frequently used as an analy-
sis technique in sociology, political science, and other social sciences, as well as in
econometrics. Researchers in these areas are seldom interested in the true metrics
of latent variables, and intercept bias is not usually a direct concern. However, this
type of study often involves a comparison between groups (e.g., across countries,
across subpopulations, or across time) and in that case different amounts of inter-
cept bias or unequal factor loadings between groups can lead to invalid conclusions
(Bielby, 1986a). Using an audit sample for model identification (when possible)
may reduce this risk (Sobel and Arminger, 1986; Scholtus et al., 2015).
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Appendix 6.A Additional methodology and results

In this appendix, a more detailed and technical description is given of the me-
thodology from Section 6.2. Section 6.A.1 reviews some general results on SEM
estimation. Section 6.A.2 considers adjustments regarding missing data that are
needed for the application in this chapter. Section 6.A.3 provides formulae for
additional fit measures used in this application.

6.A.1 PML estimation for SEMs

We begin by reviewing some of the theory behind SEM estimation, starting with
ML estimation for i.i.d. normal data and moving on to PML estimation for non-
normal data and complex survey data. A more comprehensive discussion of these
topics, as well as other estimation methods, can be found in Muthén and Satorra
(1995) or Oberski (2014) (for a single group) and Satorra (2002) (for multiple
groups).

We consider a multiple-group SEM, from which the single-group model fol-
lows as a special case. Suppose there are G groups with ng sampled units in
group g, and the samples are independent between groups. The total sample size is
n =

∑G
g=1 ng. Let ygi = (ygi1, . . . , ygip)

′ denote the vector of observed variables
for unit i in group g. In contrast with the notation of Section 6.2, we use a matrix of
uncentered cross-product moments to summarise the observed data in each group:
S0
g = (1/ng)

∑ng

i=1 ygiy
′
gi, where it is assumed that a constant 1 is included as one

of the observed variables. In addition, let s0g = vech(S0
g), where vech(.) denotes

the operator that vectorises a symmetric matrix by stacking the non-redundant el-
ements column-wise (Harville, 1997). The population equivalents of S0

g and s0g
(i.e., the matrix and vector to which these quantities converge as ng → ∞) are
denoted by Σ0

g and σ0
g, respectively. We also define s0 = ((s01)

′, . . . , (s0G)
′)′ and

σ0 = ((σ0
1)

′, . . . , (σ0
G)

′)′.
For G groups, the distance function FML that was mentioned in Section 6.2 is

given by:

FML(ϑ) =

G∑
g=1

ng
n

{
log |Σ0

g(ϑ)|+ tr(S0
gΣ

0
g(ϑ)

−1)− log |S0
g| − p

}
, (6.7)

where tr(.) denotes the trace of a matrix. Let ϑ̂ be the estimator that is obtained
by minimising (6.7). In addition, define V̂ML as a block-diagonal matrix with
(ng/n)2

−1D′ {(S0
g)

−1 ⊗ (S0
g)

−1
}
D as blocks along the main diagonal, with D

the so-called duplication matrix (Harville, 1997); let VML denote the population
equivalent of V̂ML. If the data are i.i.d. multivariate normal, then it can be shown
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that VML is identical to Γ−1, where Γ denotes the asymptotic variance-covariance
matrix of

√
ns0. Under this assumption of normality, the asymptotic variance-

covariance matrix of ϑ̂ is given by

avar(ϑ̂) =
1

n
(∆′VML∆)−1, (6.8)

with ∆ = ∂σ0(ϑ)/∂ϑ′. Furthermore, under the hypothesis that the model holds,
the test statistic X2

ML = (n − 1)FML is then asymptotically distributed as a chi-
square variate with degrees of freedom equal to df = rank(∆′

⊥Γ∆⊥). Here, ∆⊥

denotes an orthogonal complement to the matrix ∆ (Harville, 1997; Satorra, 2002).
When the data are not normally distributed (but the i.i.d. assumption does hold),

minimising (6.7) still provides consistent point estimates under rather general con-
ditions (Bollen, 1989). Asymptotic standard errors based on (6.8) may be too small
in this case. The correct expression for the asymptotic variance-covariance matrix
of ϑ̂ is now:

avar(ϑ̂) =
1

n
(∆′VML∆)−1∆′VMLΓVML∆(∆′VML∆)−1, (6.9)

which reduces to (6.8) when VML = Γ−1. The asymptotic distribution of X2
ML

also need not be chi-square in this case. Satorra and Bentler (1994) proposed a
relatively simple adjustment to X2

ML. Define

Û = V̂ML − V̂ML∆̂(∆̂
′
V̂ML∆̂)−1∆̂

′
V̂ML

and
ĉSB = tr(ÛΓ̂)/df. (6.10)

In (6.10), ∆̂ is obtained by evaluating ∆ at ϑ = ϑ̂ and Γ̂ is an appropriate estimate
of Γ (see below). The Satorra-Bentler-corrected test statistic is X2

SB = X2
ML/ĉSB,

with the chi-square distribution with df degrees of freedom as its reference distri-
bution (if the model holds).

An estimate of Γ may be obtained as follows. Define d0
gi = vech(ygiy

′
gi), so

that s0g = (1/ng)
∑ng

i=1 d
0
gi. Since this re-defines s0g as a sample mean, it can be

shown that an appropriate estimator for avar(√ngs0g) is given by

Γ̂g =
1

ng − 1

ng∑
i=1

(d0
gi − s0g)(d

0
gi − s0g)

′.

Hence, Γ = avar(
√
ns0) may be estimated by

Γ̂ =


n
n1
Γ̂1

n
n2
Γ̂2

. . .
n
nG

Γ̂G

 . (6.11)
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For complex survey designs, one should first of all replace s0 by a design-
consistent estimator of σ0. Muthén and Satorra (1995) and Oberski (2014) con-
sider the general case of a survey design that involves stratification, multi-stage
selection and clustering. Essentially, in this case we can write

s0g = (1/Ng)

ng∑
i=1

wgid
0
gi

for some weights wgi that depend on the survey design, with Ng =
∑ng

i=1wgi. To
apply the PML approach, we can still use (6.9), (6.10), and (6.11), provided that
each Γ̂g is replaced by a variance estimator that takes the sample design for group
g into account. The R package lavaan.survey implements this by referring to
the variance estimation functionality of the survey package (Lumley, 2004).

It should be noted that expression (6.11) is based on the assumption that the
samples are independent between groups. For survey designs that involve without-
replacement sampling, this will be false in general unless the survey happens to be
stratified by the variable that defines the groups. In particular, this assumption was
violated in the application of Section 6.3; note that, conditionally on the total sam-
ple, units that are not selected in the first group (the audit sample) automatically
belong to the second group. To obtain correct standard errors and fit measures
for applications where the samples are not independent across groups, it would
make sense from a design-based point of view to include the off-diagonal blocks

n√
ngnh

Γ̂gh in (6.11), where Γ̂gh denotes an estimate of acov(√ngs0g,
√
nhs

0
h) (g ̸=

h). As far as we are aware, this problem has not been treated in the SEM litera-
ture. Papadopoulos and Amemiya (2005) considered correlation between groups
in the case where the groups represent waves of a longitudinal study and the same
respondents are observed multiple times, but they did not take other aspects of
finite-population sampling into account. Deng and Yuan (2015) proposed a more
general solution, but still focussed on correlations due to multiple observations on
the same set of respondents. The general case of between-group dependencies due
to a finite-population sampling design remains open.

An approximate adjustment to Γ̂ to account for inter-group dependency in the
application of Section 6.3 was derived in Scholtus et al. (2015). As discussed there,
the effect on the fit measures and estimated standard errors was very small in this
application. For ease of exposition, we ignored the adjustment in this chapter.

6.A.2 Missing data

The use of an audit sample leads naturally to a two-group SEM with some of the
variables missing by design in the second group. As described in Section 6.2.3,
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Baumgartner and Steenkamp (1998) suggested that these missing values can be
accounted for by imputing random, normally-distributed values with mean zero
and variance one, such that the imputed variables are uncorrelated to all other vari-
ables in the second group. (That is, they are both uncorrelated amongst themselves
and uncorrelated to the observed variables.) In case a complex survey design is
used, the design-consistent estimates of the mean, variance and covariances should
equal 0, 1 and 0, respectively.

As described in Section 6.2.3, the measurement equations for the missing vari-
ables in the second group are then chosen in such a way that the means, variances
and covariances involving these variables are reproduced exactly by the SEM,
while the estimation of the rest of the model is not affected by these variables.
The sample moments involving the missing variables have thus been fixed so that
they do not contribute to FML (or any other fitting function). The degrees of free-
dom of the model should be corrected to take this into account. Let q denote the
number of missing variables in the second group and let df the denote the uncor-
rected degrees of freedom of the model, computed as if the imputed values were
ordinary observed values. Since we have fixed q means and

p+ (p− 1) + · · ·+ (p− q + 1) = pq − q(q − 1)

2

distinct covariances, the correct degrees of freedom should be:

df∗ = df − q

(
p− q − 3

2

)
. (6.12)

Baumgartner and Steenkamp (1998) applied the above approach only in the
context of standard ML estimation. For PML estimation, we have to make an
additional adjustment to Γ̂2 = âvar(

√
n2s

0
2) (or, more generally, to Γ̂g for each

group g in which missing variables have been imputed in this way). Since the
observed means and covariances involving the imputed variables are fixed, all el-
ements of the corresponding rows and columns of Γ̂2 should be set to zero. In
particular, the Satorra-Bentler correction factor (6.10) is replaced in this context by
ĉ∗SB = tr(ÛΓ̂

∗
)/df∗, where df∗ is given by (6.12) and Γ̂

∗
is obtained by making

the above-mentioned adjustment to Γ̂ from (6.11). The overall fit of the model can
now be tested by comparing X2∗

SB = X2
ML/ĉ

∗
SB to a chi-square distribution with

df∗ degrees of freedom.

6.A.3 Other fit measures

In Section 6.3, several other measures were used in addition to X2∗
SB to evaluate

the model fit. For the sake of completeness, we provide expressions for the robust
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(PML) versions of these fit measures, with adjustments to account for the imputed
values in the second group (see Section 6.A.2). The following formulae are based
on the default implementation in lavaan.

• Comparative Fit Index (CFI):

CFI∗SB = 1−
max

{
X2∗

SB − df∗, 0
}

max
{
X2∗

SB − df∗, X2∗
SB,0 − df∗0 , 0

} . (6.13)

• Tucker-Lewis Index (TLI):

TLI∗SB =
(X2∗

SB,0/df
∗
0 )− (X2∗

SB/df
∗)

(X2∗
SB,0/df

∗
0 )− 1

. (6.14)

• Root Mean Square Error of Approximation (RMSEA):

RMSEA∗
SB =

√
Gmax

{
n−1(X2∗

SB − df∗), 0
}
/df∗. (6.15)

Note: The CFI and TLI compare the fit of the model to that of a so-called
baseline model. In the application of Section 6.3, we used the default baseline
model selected by lavaan: this is the independence model with no restrictions
across groups and with each observed variable modelled as yk = τk + ϵk, with
cov(ϵk, ϵl) = 0 for all k ̸= l. In expressions (6.13) and (6.14), X2∗

SB,0 and df∗0
refer to this baseline model. These adjusted quantities can be obtained from their
unadjusted versions X2

SB,0 and df0 analogously to Section 6.A.2, with one subtle
difference in the definition of df∗0 . Under the baseline model, the intercepts and
error variances of the q imputed variables in the second group are not fixed (as in
our original model) but estimated. This means that our adjustment to df0 needs to
account for 2q degrees of freedom less than before. Hence, the correction formula
for the degrees of freedom of the baseline model becomes:

df∗0 = df0 − q

(
p− q − 3

2

)
+ 2q = df0 − q

(
p− q + 1

2

)
. (6.16)

Appendix 6.B Parameter estimates

For each NACE group of the application in Section 6.3, the full set of parameter
estimates for the final model is listed in Table 6.7.
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Table 6.7: Parameter estimates for the final model; parameter names and indices refer to
Figure 6.2.

45112 45190 45200 45400
parameter estim. s.e. estim. s.e. estim. s.e. estim. s.e.
λ1 0.83 0.02 0.90 0.05 0.74 0.07 0.81 0.08
λ2 1/0a − 1/0a − 1/0a − 1/0a −
λ3 1.03 0.01 0.95 0.03 1.30 0.32 0.98 0.01
λ4 1/0a − 1/0a − 1/0a − 1/0a −
λ5 1.03 0.01 0.97 0.02 1.22 0.23 1.01 0.01
λ6 1/0a − 1/0a − 1/0a − 1/0a −
λ7 0.79 0.01 0.89 0.02 1.29 0.19 0.80 0.04
λ8 1.02 0.01 0.95 0.02 1.23 0.20 0.99 0.03
λ9 1.01 0.01 1.01 0.00 1.21 0.19 0.98 0.02
λ10 1/0a − 1/0a − 1/0a − 1/0a −
θ11 1.24 0.57 9.57 2.32 2.77 1.33 1.02 0.42
θ22 0/1a − 0/1a − 0/1a − 0/1a −
θ33 0.04 0.01 0.36 0.13 0.05 0.05 0.00 0.00
θ44 0/1a − 0/1a − 0/1a − 0/1a −
θ55 0.03 0.02 0.41 0.18 0.05 0.04 0.00 0.00
θ66 0/1a − 0/1a − 0/1a − 0/1a −
θ77 1.00 0.20 0.57 0.19 0.04 0.01 0.04 0.01
θ88 0.06 0.02 0.41 0.19 0.05 0.03 0.01 0.00
θ99 0.87 0.21 0.00 0.00 0.06 0.03 0.00 0.00
θ10,10 0/1a − 0/1a − 0/1a − 0/1a −
τ1 1.04 0.17 0.81 0.37 1.17 0.30 1.04 0.15
τ2 0a − 0a − 0a − 0a −
τ3 −0.01 0.04 0.03 0.03 −0.00 0.06 0.00 0.00
τ4 0a − 0a − 0a − 0a −
τ5 −0.01 0.04 0.03 0.04 −0.01 0.08 −0.00 0.01
τ6 0a − 0a − 0a − 0a −
τ7 −0.04 0.04 −0.00 0.05 −0.04 0.08 0.01 0.03
τ8 0.00 0.05 0.06 0.03 −0.02 0.08 0.00 0.01
τ9 −0.01 0.05 −0.00 0.00 −0.04 0.08 0.00 0.01
τ10 0a − 0a − 0a − 0a −
β31 0.05 0.00 0.04 0.01 0.04 0.01 0.04 0.01
β32 1.03 0.00 1.14 0.03 1.19 0.11 1.16 0.04
β41 0a − 0.01 0.00 0.01 0.00 0a −
β43 1.02 0.00 1.00 0.01 0.96 0.04 1.02 0.02
ψ11 157 0.62 96.8 0.65 67.4 0.07 10.5 2.06
ψ22 28.6 1.75 8.29 1.52 0.36 0.18 0.56 0.10
ψ12 59.7 1.33 25.2 2.49 3.59 0.87 2.11 0.31
ψ33 0.01 0.00 0.05 0.01 0.02 0.02 0.00 0.00
ψ44 0.01 0.00 0.02 0.01 0.00 0.00 0.00 0.00
α1 3.44 0.21 4.06 0.40 3.02 0.36 1.31 0.22
α2 1.21 0.06 0.94 0.08 0.15 0.02 0.29 0.06
α3 0.02 0.01 0.02 0.03 0.02 0.02 0.00 0.01
α4 0.03 0.01 −0.01 0.02 0.02 0.01 0.01 0.01

a parameter fixed a priori, value may depend on group as indicated
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Chapter 7

Estimating the Quality of
Business Survey Data before and
after Automatic Editing

This chapter was co-authored by Bart F. M. Bakker (Statistics Netherlands, VU University) and
Sam Robinson (Leiden University). Author contributions: all authors contributed ideas; Robinson
contributed to the mathematical work and implemented the EM algorithm for Model 2; Scholtus
developed the rest of the mathematical work, carried out the analysis and wrote the report; Bakker
edited the report. A condensed version of this chapter was presented as a conference paper at the
2017 UN/ECE Work Session on Statistical Data Editing as Scholtus et al. (2017).

7.1 Introduction

Statistical results can be affected by measurement errors in the underlying data.
National statistical institutes (NSIs) and other producers of official statistics there-
fore edit their data for errors as part of the process of generating statistical output
(De Waal et al., 2011). Editing can be done manually or automatically. Statistics
Netherlands uses both automatic and manual editing in the production of economic
statistics. Automatic editing methods are more efficient than manual editing – in
terms of both costs and time – and yield results that are reproducible (Pannekoek
et al., 2013). On the other hand, it is generally held that the measurement quality
of automatically edited data is lower than that of manually edited data (EDIMBUS,
2007), although little quantitative evidence exists either for or against this belief.

In this chapter, we propose to evaluate the measurement quality of automati-
cally edited survey data in an objective way, by modelling the residual measure-
ment errors after editing. We will compare the quality of an observed variable
before and after automatic editing, in terms of validity (correlation of the observed
variable to the true variable of interest) and intercept bias (systematic deviation be-
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tween the observed variable and the variable of interest). To obtain an identified
model, auxiliary variables are included by linking the survey data before and after
automatic editing to data from administrative sources.

Two different measurement error models will be considered. The first model is
a structural equation model, in which the true values of several conceptual variables
are represented by latent (unobserved) variables. Each latent variable is measured
by one or more observed variables. Measurement errors in these observed variables
are represented by error terms in a linear regression equation. Survey variables be-
fore and after automatic editing are included as observed variables in this model,
along with several administrative variables. In addition, identification of all rele-
vant model parameters requires that a small audit sample is included; for the units
in this audit sample, it is assumed that error-free versions of the variables of inter-
est have been obtained by an additional manual editing effort. We apply this model
to survey data of the Netherlands’ Structural Business Statistics (SBS) linked to
administrative data, building on a previous application of structural equation mod-
elling in Scholtus et al. (2015) (see also Chapter 6 of this thesis). The previous
application focussed on estimating the measurement quality of the administrative
variables, whereas here we focus on the survey variables.

The structural equation model assumes that – apart from the audit sample – all
units have errors on all observed variables. We also apply a different latent vari-
able model that assumes that errors occur according to a so-called “intermittent”
mechanism. This means that each observation has a certain non-zero probability
of being error-free. The latter assumption may be more appropriate for the data at
hand and is in line with much of the existing literature on data editing [see, e.g.,
Di Zio and Guarnera (2013) and Chapter 2 of this thesis]. The observations that
do contain errors are again modelled using linear regression techniques. A prac-
tical advantage of this second model is that no additional audit data are needed to
identify all model parameters.

The remainder of this chapter is organised as follows. We begin by briefly
describing the data editing process for the Netherlands’ SBS and the data that will
be used here in Section 7.2. An introduction to the two models and a summary of
their results are given in Section 7.3 (Model 1) and Section 7.4 (Model 2). Possible
implications and limitations of these results are discussed in Section 7.5. Finally,
some concluding remarks follow in Section 7.6.
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7.2 Application

7.2.1 Automatic editing in the Netherlands’ SBS

The SBS aim to provide an overview of employment and the financial structure
(costs and revenues) of different sectors of the economy. Data are collected in a
sample survey of businesses. The sample is stratified by type of economic activity
and size class. Businesses are classified by main economic activity according to the
so-called NACE classification. We use the term “NACE group” to refer to a stra-
tum of units with similar economic activities for which separate SBS estimates are
published. The SBS questionnaire is tailored separately to each NACE group. On
average, the SBS questionnaire produces a data set of about 100 different variables.

Figure 7.1: Overview of the process for automatic editing in the Netherlands’ SBS.

Figure 7.1 gives an overview of the automatic editing process for the Nether-
lands’ SBS. Each box corresponds to a version of the data and each arrow between
boxes corresponds to a process step during which changes can be made to the data.

The automatic process steps are, in chronological order:

• Input processing (IP): Technical checks on the initial, unedited data and cor-
rection of uniform thousand-errors.

• Deductive processing 1 (DP1): Deterministic IF-THEN-rules to resolve com-
mon errors with a known cause.

• Error localisation and imputation (EL&I): Automatic error localisation fol-
lowed by imputation of missing and discarded values.

• Deductive processing 2 (DP2): Deterministic IF-THEN-rules to resolve in-
consistencies not handled during EL&I (e.g., consistency between financial
variables and stock variables).

Of these process steps, the EL&I step is the most complex from a methodolog-
ical point of view. In this step, the data are made consistent with a given set of
restrictions (so-called edit rules) by replacing observed values with new values if
necessary. The selection of values to change is based on the paradigm of Fellegi
and Holt (1976), which aims to minimise the number of changed values given that

173



Chapter 7. Estimating the Quality of Automatic Editing

the resulting record has to satisfy all restrictions. This leads to a mathematical
optimisation problem which can be solved automatically (De Waal et al., 2011).

The methodology of the two deductive processing steps DP1 and DP2 is less
complex. These steps consist of applying a number of deterministic rules that can
make changes to the data. An example of a rule that is used during process step
DP1 is:

IF Depreciations < 0

THEN Depreciations := − Depreciations.

According to this rule, if any negative values are encountered for the variable De-
preciations, these have to be replaced by their absolute values. There is in fact an
edit rule (restriction) in the SBS which states that the value of Depreciations must
be non-negative.

We will not describe the process steps of Figure 7.1 in more detail here. A gen-
eral overview of methodology for automatic data editing can be found elsewhere,
e.g., in De Waal et al. (2011) or Pannekoek et al. (2013). A detailed description
of the data editing process of the Netherlands’ SBS is provided by De Jong (2002)
and Hoogland and Smit (2008).

A feature of the above automatic editing process is that, during each process
step, the vast majority of observed values are not changed. Thus, most of the
observed values in the unedited data (first box in Figure 7.1) are equal to the corre-
sponding values in the edited data (final box in Figure 7.1). This happens because
the editing methods used for the Netherlands’ SBS all assume, either explicitly or
implicitly, that most of the observed values are correct to begin with. For instance,
the Fellegi-Holt paradigm that is used during the EL&I step is based on the as-
sumption that errors are rare, and that a record should therefore be made consistent
with the edit rules by changing the least possible number of values.

For this study, we want to compare the measurement quality of variables in the
input data (second box in Figure 7.1) and edited data (right-most box). This will
give an impression of the overall effect of automatic editing on data quality. We
take the second box as a starting point rather than the first box, because some of
the technical checks carried out during the IP step are required to know whether
the data are accessible at all. In fact, for questionnaires that are submitted on paper
– which is still done by a minority of responding units – the data are digitised as
part of the IP step, so no unedited data are available in digital form for these units.

In the actual production process of the Netherlands’ SBS, only a subset of the
data after input processing is treated by the remaining automatic process steps in
Figure 7.1. The other records are edited manually instead. A selection procedure
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is applied to the input data to assign records either to automatic or manual editing
(Hoogland, 2006). For the present study, we created a version of the data in which
as many records as possible were edited automatically, regardless of the selection
that was made during actual production. By focussing on this data set, we can
evaluate the “pure” effect of automatic editing on the measurement quality of SBS
data, rather than the combined effect of measurement and selection.

In practice, not all records can be edited automatically. During the IP step,
records can be rejected (discarded from further automatic processing) if certain key
variables such as total turnover are missing. During the EL&I step, a small number
of records for which no solution to the error localisation problem can be found are
also rejected. In the actual production process, these records would then be treated
manually instead. For the purpose of this study, they are treated as non-response.
Fortunately, this concerns only a handful of records.

7.2.2 Data

For this application, we used SBS data of reference year 2012 for four different
NACE groups within the economic sector “Trade”. These NACE groups are listed
in Table 7.1. The SBS data were linked to administrative data from three dif-
ferent sources. Firstly, we used the General Business Register (GBR) which is
maintained by Statistics Netherlands as a population frame of businesses in the
Netherlands. We also used two data sets collected by the Netherlands’ tax author-
ities: Value-Added Tax declarations (VAT) on turnover and the Profit Declaration
Register (PDR) which contains many administrative variables that are similar to
SBS variables. Finally, for a small random subsample of units the SBS data were
re-edited by subject-matter experts with the aim of recovering the true values for
all variables (audit data). Some additional information about these different data
sources can be found in Scholtus et al. (2015) or Chapter 6 of this thesis.

Table 7.1: Overview of NACE groups considered in this application

NACE description
45112 Sale and repair of passenger cars and light motor vehicles
45190 Sale and repair of trucks, trailers, and caravans
45200 Specialised repair of motor vehicles
45400 Sale and repair of motorcycles and related parts

Table 7.2 lists the number of available records in each NACE group. The edit-
ing process for very large and/or complex units differs from that of the other units
(in particular, they are never edited automatically), so these were not included in
the present study (second line in Table 7.2).
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Table 7.2: Number of units in each NACE group. All figures refer to 2012 and, apart from
the first line, to the population with large and/or complex units excluded.

NACE group 45112 45190 45200 45400
population (total) 18,680 1,790 6,054 1,763
population (w/o complex units) 18,556 1,739 6,018 1,759
SBS net sample, edited 914 165 269 74
SBS net sample, edited and linked to admin. data 810 158 231 58
net audit sample 43 45 43 43

The GBR and SBS data could be linked directly by business identification num-
ber. The other administrative sources contain information for fiscal units rather
than statistical units. The relationship between fiscal and statistical units is known
in the GBR, but not all fiscal units can be linked to a single statistical unit. There-
fore, and also due to missing data in the administrative sources, it was not possible
to link all units in the SBS data to administrative data (fourth line in Table 7.2).
Scholtus et al. (2015) investigated whether the linked data might suffer from selec-
tion bias but found no indication that such a bias occurred.

It is worth noting that the application in this chapter used mostly the same data
that were used in the application of Chapter 6 of this thesis. The only difference
is that the present application used versions of the SBS data before and after auto-
matic editing, whereas the previous application used SBS data after (automatic or
manual) editing during regular production. In particular, differences between the
numbers of units in Table 7.2 and those in Table 6.2 are due to SBS records that
could not be edited automatically. Although the main aim of the present study is to
evaluate the measurement quality of SBS data before and after automatic editing,
this application also allows us to assess the robustness of the previously estimated
measurement parameters for the administrative variables. Ideally, the estimated va-
lidity of administrative variables should not be influenced by the choice of survey
data included in the model.

7.3 Model 1: A structural equation model

7.3.1 Methodology

The first model we considered is an extension of the structural equation model
used in Chapter 6. In general, a linear structural equation model (SEM) consists of
two types of regression equations. Firstly, a number of latent variables η1, . . . , ηm
are introduced and linear regression models are defined to describe the relations
between these latent variables. Secondly, each of the observed variables y1, . . . , yp
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in the data set is related to (at least) one of the latent variables by a linear regression
model. In our application, the latent variables represent the true variables of interest
and the observed variables are error-prone measurements of these variables. In this
special case, each observed variable yk is related to exactly one latent variable (say,
ηjk ) and the SEM is given by the following regression equations (where i denotes
a unit):

ηji = αj +
∑
j′ ̸=j

βjj′ηj′i + ζji, (j = 1, . . . ,m), (7.1)

yki = τk + λkηjki + ϵki, (k = 1, . . . , p). (7.2)

Here, ζj and ϵk denote zero-mean disturbance terms, with cov(ζj , ζj′) = ψjj′ and
cov(ϵk, ϵk′) = θkk′ . See, e.g., Bollen (1989) for a general introduction to SEMs.

For our purposes here, we are mainly interested in the parameters of the mea-
surement model (7.2). The intercept τk and factor loading λk describe the effect of
systematic measurement errors in yk. To the extent that τk deviates from 0 and λk
deviates from 1, the observed variable yk is biased with respect to the true value
ηjk . The absolute value of the standardised version of λk (say, λsk) can be used to
quantify the so-called indicator validity coefficient of yk as a measure of ηjk :

IVC(yk) = |λsk| = |λk|

√
var(ηjk)
var(yk)

=

√
1− var(ϵk)

var(yk)
. (7.3)

The indicator validity coefficient lies between 0 and 1. Values close to 1 indicate
a strong linear relationship between the observed value of yk and the true value of
ηjk . The term “indicator validity” is due to Saris and Andrews (1991); see also
Chapter 2.

For this study, we focussed on four key SBS variables: Number of employees,
Costs of purchases, Total operating costs, and Total turnover. We only discuss
results related to Total turnover here, as this was the main variable of interest both
in this application and the previous application in Chapter 6.

A path diagram of the SEM that was used in this application is shown in Fig-
ure 7.2. This path diagram is identical to Figure 6.2 in Chapter 6, except that
the observed variable SBS Total turnover (y9 in that model) is now split into two
versions, corresponding to input data (y9I ) and edited data (y9E). Since any mea-
surement errors that occur in the input data and are not resolved during automatic
editing will also be present in the edited data, it is likely that the error terms ϵ9I
and ϵ9E are correlated. The covariance between these errors was therefore added
as a model parameter (θ9I,9E). All other disturbance terms were assumed to be
mutually uncorrelated.
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Figure 7.2: Path diagram of the basic SEM used in this application (intercepts not shown).
For the group of non-audited units, remove variables y2, y4, y6, and y10.

The error-free observed variables y2, y4, y6 and y10 in the model of Figure 7.2
were available only for the units in the audit sample. Since the audit sample was
selected by subsampling from the original SBS data, the missing values on these
variables were known to be missing at random in the terminology of Little and
Rubin (2002). We refer to Scholtus et al. (2015) or Chapter 6 of this thesis for a
description of the way these missing data were taken into account in the estimation
of the SEM.

SEMs are often estimated by maximum likelihood, under the assumptions that
the observed data can be seen as (1) independent draws (2) from a multivariate
normal distribution. In the present application, neither of these assumptions holds.
We used pseudo maximum likelihood (PML) to account for non-normality of the
data and for the finite-population sampling design of the SBS survey and audit
sample; see, e.g., Muthén and Satorra (1995). The models were estimated in the
R environment for statistical computing (R Development Core Team, 2017), using
the functionality in the packages lavaan (Rosseel, 2012) and lavaan.survey
(Oberski, 2014). See Scholtus et al. (2015) or Chapter 6 for more details about the
estimation procedure.

Due to the fact that many observed values in the SBS input and edited data
were equal, as mentioned above, y9I and y9E were highly correlated (and usually
also highly correlated to the audit variable y10). For one NACE group (45190), y9I
and y9E were perfectly correlated and it was therefore not possible to fit a model
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that involved both variables simultaneously. In this case, we attempted instead to
fit a model that involved only one of y9I and y9E .

7.3.2 Results

Fit measures and parameter estimates related to Total turnover for the best fitting
models are shown in Table 7.3 and Table 7.4. See Chapter 6 for definitions of these
fit measures.

Table 7.3: Fit measures for the final model

NACE group 45112 45190 45200 45400
X2∗

SB 67.7 150.4 88.2 230.2
df∗ 78 61a 78 78
p value 0.790 0.000 0.201 0.000

CFI∗SB 1.000 0.885 0.984 0.915
TLI∗SB 1.003 0.886 0.985 0.917
RMSEA∗

SB 0.000 0.138 0.034 0.266

a No differences between y9I and y9E in observed data (correlation is 1). To avoid numer-
ical issues, a model was fitted with y9I excluded from the data.

Table 7.4: Estimated indicator validity and measurement parameters (intercept and slope)
for Turnover under Model 1 (with standard errors)

45112 45190 45200 45400
parameter estimate s.e. estimate s.e. estimate s.e. estimate s.e.
τ (VAT) −0.01 0.05 0.03 0.07 0.01 0.04 0.01 0.03
λ (VAT) 0.79 0.01 0.88 0.05 1.08 0.16 0.80 0.05
IVC (VAT) 0.95 0.98 0.97 0.97
τ (PDR) 0.00 0.05 0.08 0.05 0.02 0.05 0.00 0.01
λ (PDR) 1.02 0.01 0.96 0.03 1.05 0.19 0.99 0.03
IVC (PDR) 1.00 1.00 0.97 1.00
τ (SBS,I) 0.00 0.05 −a − −0.00 0.00 0.00 0.01
λ (SBS,I) 1.00 0.01 − − 1.00 0.00 0.98 0.02
IVC (SBS,I) 0.98 − 1.00 1.00
τ (SBS,E) 0.02 0.05 0.03 0.06 −0.00 0.00 0.01 0.01
λ (SBS,E) 1.00 0.01 1.04 0.04 1.00 0.00 0.98 0.02
IVC (SBS,E) 0.98 0.97 1.00 1.00

a See footnote for Table 7.3.

The main results are:

179



Chapter 7. Estimating the Quality of Automatic Editing

• For the administrative versions of Turnover (VAT and PDR), in most NACE
groups the parameter estimates were very similar to those in Chapter 6. In
particular, it is seen that the PDR data provide a better measurement of
Turnover than the VAT data for these NACE groups, both in terms of IVC
and bias. VAT Turnover underestimates the true Turnover (λ < 1) for all
NACE groups except 45200 where λ > 1.

• In all NACE groups the estimated IVC and bias of SBS input data and SBS
edited data were virtually equal. By extension, this result also holds for
NACE group 45190 where the two SBS variables were perfectly correlated.

• In all NACE groups where both y9I and y9E were included in the model, the
estimated correlation between ϵ9I and ϵ9E differed significantly from 0. In
fact, it was estimated to be larger than 0.90 in all of these groups but one.

The first result is positive, because it shows that the estimated measurement prop-
erties of the administrative data do not depend significantly on the choice of sur-
vey data to include in the model. The latter two results are natural, given that
the observed values of the two SBS turnover variables were equal for most units.
However, this also undermines the assumption that an SEM can be used to describe
these data: under this type of model, the event that two observed variables are equal
should occur with probability zero. In the next section, we will discuss a different
model that allows for the possibility that two observed variables are exactly equal
in some records.

7.4 Model 2: A finite mixture model

7.4.1 Methodology

Guarnera and Varriale (2015, 2016) considered a measurement error model for
data from multiple sources which takes into account the possibility that a latent
target variable is sometimes measured without error. In contrast to the model of
Section 7.3, we now focus on a single variable of interest.

Let ηi denote the true value of a variable of interest (say, Total turnover) for unit
i. For each observed variable yk that measures η, a 0-1-indicator zk is introduced
such that yki = ηi if zki = 0. For units with zki = 1, yki contains a measurement
error which is assumed to have a similar structure as under Model 1:

yki =

{
ηi if zki = 0,
τk + λkηi + eki if zki = 1,

(7.4)
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where τk and λk are constants and eki follows a normal distribution with mean
zero and variance σ2k. In a single formula, this model for yk can be expressed as
follows:

yki = (1− zki) ηi + zki (τk + λkηi + eki) . (7.5)

It is assumed that, for each unit, all zk and all ek are independent across different
observed variables. This is similar to assuming that the measurement errors in an
SEM are uncorrelated. The probability of observing an error on yk is represented
by the parameter πk = P (zk = 1) = E(zk).

In addition to the above measurement model, we also use an ordinary linear
regression model to describe the variation in the true values ηi across units as a
function of covariates x:

ηi = β′xi + ui, (7.6)

where β denotes a vector of regression coefficients and it is assumed that ui is
normally distributed with mean zero and variance σ2.

The parameters of the model given by (7.5) and (7.6) again provide several in-
teresting indicators for the measurement quality of each observed variable. Firstly,
we can look at the error probability πk: a value of πk closer to 1 indicates that
more errors occur for variable yk. Secondly, the intercept τk and slope λk in (7.5)
provide information about the amount of systematic bias in yk, conditional on the
event that an error occurs. Finally, to quantify the effect of the random measure-
ment errors ek on yk, we can again use the indicator validity coefficient. For the
observations yki that contain errors, the indicator validity coefficient is given by
the standardised slope parameter |λsk|, analogously to (7.3) for Model 1, except
that the standardisation should now be based only on the part of the data for which
yk contains errors:

IVC(yk|zk = 1) = |λsk| = |λk|

√
var(η|zk = 1)

var(yk|zk = 1)
=

√
1−

σ2k
λ2kσ

2
η + σ2k

. (7.7)

Here, σ2η denotes the total variance of η which, under model (7.6), is given by
σ2η = β′Σxxβ + σ2, where Σxx denotes the variance-covariance matrix of x.
(Note that, in the presence of covariates, σ2 represents the unexplained variance
in η.) Furthermore, the error-free yki can be seen as observations with a validity
coefficient of 1. Hence, a natural definition of the unconditional indicator validity
coefficient of yk under Model 2 is:

IVC(yk) = πk × IVC(yk|zk = 1) + (1− πk)× 1

= 1− πk

(
1−

√
1−

σ2k
λ2kσ

2
η + σ2k

)
. (7.8)
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This unconditional indicator validity coefficient has the same interpretation as the
IVC defined under Model 1.

Under this model, there is a non-zero probability (namely 1 − πk) that an ob-
served value yki is equal to the true value ηi and therefore error-free. The event
that two different observed values yki and yli for a given unit i are identical occurs
with probability (1−πk)(1−πl), which is also non-zero. By contrast, these events
have probability zero under the SEM of Section 7.3. Thus, when the observed data
contain a non-negligible number of records with yki = yli, Model 2 may be more
appropriate than Model 1.

In the previous paragraph, we used the fact that the event yki = ηi occurs
with probability zero if yki contains an error. This follows from the above assump-
tion that the measurement errors are normally distributed, since the probability of
drawing any specific value from such a distribution equals zero. In fact, the same
property holds for any random variable with a continuous distribution, so we do not
need the assumption of normality here. By extension, since we also assumed that
errors in different observed variables are independent, it follows that if we observe
yki = yli, it must hold that yki = yli = ηi. That is to say, under the assumptions
of this model, if a record contains the same value for two (or more) observed vari-
ables, then that value must also be equal to the corresponding true value. Thus,
not only can the observed values be error-free under this model, in the presence of
multiple observed values it is possible to recognise some of these error-free values
from the observed data themselves. Of course, all of this need not be true if the
model does not hold for the data at hand. In particular, the assumption that errors
in different variables are independent is a strong assumption that may not always
be satisfied in practice.

The above model formulation is more general than that of Guarnera and Varri-
ale (2015, 2016) who assumed that τk = 0 and λk = 1 for all observed variables
[in which case formula (7.5) can be simplified to yki = ηi + zkieki]. In principle,
the model could be extended to multiple target variables (Guarnera and Varriale,
2016) but an estimation procedure for such an extended model has not yet been
developed. Note that it is possible to introduce covariates x to predict the true
value of the target variable, but potential errors in these covariates are not taken
into account. Another important limitation of this model is that it relies heavily on
the assumption that measurement errors in different observed variables are inde-
pendent. Thus, correlated measurement errors cannot be taken into account under
the model as formulated here.

As Model 2 is less well-known, we will provide some more details about the
estimation procedure than we did for Model 1. Technically, model (7.5)–(7.6) is
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an example of a so-called finite mixture model. For n observations on K observed
variables y1, . . . , yK with error patterns specified by z1, . . . , zK , the complete-data
loglikelihood function is as follows:

ℓc(θ) = C +

K∑
k=1

[
n log(1− πk) + nk log

(
πk

1− πk

)]

− n

2
log σ2 − 1

2σ2

n∑
i=1

(ηi − β′xi)
2

−
K∑
k=1

[
nk
2

log σ2k +
1

2σ2k

n∑
i=1

zki(yki − τk − λkηi)
2

]
. (7.9)

In this expression, θ denotes a vector containing all distinct parameters of the
model, nk =

∑n
i=1 zki denotes the number of observations with an error on yk,

and C denotes a constant term that does not depend on any unknown parameters.
See, e.g., McLachlan and Peel (2000, p. 48) for the complete-data loglikelihood of
a general finite mixture model.

In practice, not all ηi and z1i, . . . , zKi are observed – although some of them
are. As noted above, the true value ηi (and hence all zki) can be inferred from the
observed data when yki = yli for (at least) two different observed values. To give
an example: in the presence ofK = 3 observed variables there are 23 = 8 possible
error patterns. We can derive ηi and the error pattern for all observations with

(z1i, z2i, z3i) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} , (7.10)

as for these observations at least two of the observed values are identical. For
the remaining observations, we can infer that (z1i, z2i, z3i) must have one of the
four remaining patterns – that is, at least two of the three observed values must be
erroneous. However, we cannot derive the exact error pattern and we cannot obtain
the value of ηi for these observations.

The model parameters can still be estimated from (7.9) by using maximum
likelihood estimation for incomplete data. Guarnera and Varriale (2016) worked
out an EM algorithm (Expectation – Maximisation) for the model with K = 3

observed variables, under the restriction that τk = 0 and λk = 1. Robinson (2016)
gives a detailed description of this algorithm, including an extension to estimate τk
and λk. For the present study, we wrote an implementation of this algorithm in R.
We refer to Little and Rubin (2002) for an introduction to EM algorithms in gen-
eral. Below we also report asymptotic standard errors for the estimated parameters;
details on the derivation of these standard errors are given in Appendix 7.A.
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In our application, there are four different sources of Turnover: VAT, PDR,
SBS-input and SBS-edited. However, measurement errors in SBS-input and SBS-
edited are highly correlated, as discussed above. We therefore estimated separate
models with either SBS-input or SBS-edited included besides VAT and PDR, so
K = 3. In addition, for a subset of units we have an audit variable for which it
is assumed that yki = ηi with certainty. In the context of this model, this simply
means that there may be some additional units for which ηi and (z1i, z2i, z3i) can
be obtained from the observed data. It is interesting to note that for Model 2 – in
contrast to Model 1 – the intercept and slope parameters τk and λk are identified
even without audit data, due to the presence of observations where the true value
ηi can be inferred from the data.

The loglikelihood (7.9) is correct under the assumptions that (1) the residuals
ui in (7.6) are N(0, σ2) distributed and (2) the measurement errors eki in (7.5) are
N(0, σ2k) distributed. For our data on Turnover, neither of these assumptions holds.
In contrast to Model 1, this non-normality may be more problematic for Model 2,
as we do not have a robust estimation procedure for this model.

By examining the cases with error patterns (7.10), for which ηi is known, it was
found that the above assumptions were more reasonable after applying a logarith-
mic transformation to the data. We will therefore present results for Model 2 with
all variables measured on a log scale. To be precise, for error-prone observations
(zki = 1), the measurement model (7.4) was replaced by

log(yki + 0.5) = τk + λk log(ηi + 0.5) + eki. (7.11)

We used log(y + 0.5) rather than log y to be able to handle cases with y = 0. A
similar transformation was applied to (7.6). Note that model (7.11) is equivalent to

yki + 0.5 = exp(τk)(ηi + 0.5)λk exp(eki). (7.12)

Thus, for the variables on the original scale the error structure is now multiplicative
rather than additive.

It is clear that the parameters τk and λk in (7.12) have a very different inter-
pretation in comparison to model (7.4), except for the trivial special case where
τk = 0 and λk = 1. Unfortunately, this means that the estimated parameters for
Model 2 with this transformation are not directly comparable to those obtained for
Model 1 in Table 7.4. In order to have sets of parameter estimates that could be
compared between the two models, we therefore estimated the SEM of Figure 7.2
again with the same logarithmic transformation (7.11) applied to our data. The
resulting estimated measurement parameters for Turnover are shown in Table 7.5.
The estimated intercept and slope parameters for Model 2 that will be reported
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below should therefore be compared to those in Table 7.5 for Model 1. As noted
above, there is no straightforward way to relate the results in Table 7.5 to those in
Table 7.4.

Table 7.5: Estimated indicator validity and measurement parameters (intercept and slope)
for Turnover on a log scale under Model 1 (with standard errors)

45112 45190 45200 45400
parameter estimate s.e. estimate s.e. estimate s.e. estimate s.e.
τ (VAT) 0.08 0.15 0.54 0.16 0.13 0.16 −0.34 0.33
λ (VAT) 0.93 0.03 0.89 0.03 0.98 0.03 1.01 0.07
IVC (VAT) 0.93 0.95 0.98 0.94
τ (PDR) −0.12 0.09 0.40 0.14 0.25 0.16 −0.32 0.12
λ (PDR) 1.02 0.02 0.94 0.02 0.96 0.03 1.06 0.03
IVC (PDR) 0.98 0.93 0.98 1.00
τ (SBS,I) 0.09 0.17 −a − 0.15 0.26 −0.89 0.43
λ (SBS,I) 0.97 0.03 − − 0.94 0.05 1.15 0.09
IVC (SBS,I) 0.91 − 0.83 0.96
τ (SBS,E) −0.09 0.19 −0.02 0.01 0.17 0.19 0.17 0.29
λ (SBS,E) 1.00 0.03 1.00 0.00 0.95 0.04 0.96 0.06
IVC (SBS,E) 0.92 1.00 0.92 0.96

a See footnote for Table 7.3.

7.4.2 Results

Table 7.6 shows a selection of estimated parameters for the model with SBS input
data; Table 7.7 shows the corresponding results for the model with SBS edited
data. In all models, we used the observed (edited) Number of employees and Total
operating costs in SBS and a constant as covariates x to predict the true value of
Turnover [cf. (7.6)]. In these tables, we have included both the conditional IVC
(7.7) for error-prone observations (rows labelled “cIVC”) and the unconditional
IVC (7.8) for all observations (rows labelled “IVC”). Note that the unconditional
IVC is always closer to 1 than the conditional IVC, due to the contribution of
observations that are error-free.

The main results that can be seen in these tables are:

• The estimated parameters for the administrative sources do not differ signif-
icantly between both tables – i.e., the choice between using input or edited
SBS data does not affect the parameter estimates for the other observed vari-
ables.

• According to the model, the VAT variable has relatively large error proba-
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Table 7.6: Estimated indicator validity and measurement parameters (error probability,
intercept and slope) for Turnover on a log scale under Model 2 (with standard errors);
model with SBS input data for Turnover

45112 45190 45200 45400
parameter estimate s.e. estimate s.e. estimate s.e. estimate s.e.
π (VAT) 0.91 0.01 0.82 0.03 0.76 0.03 0.85 0.05
τ (VAT) −0.26 0.06 0.67 0.22 0.07 0.10 −0.19 0.26
λ (VAT) 1.00 0.01 0.90 0.03 0.99 0.02 0.99 0.04
cIVC (VAT) 0.98 0.96 0.98 0.97
IVC (VAT) 0.98 0.96 0.98 0.98
π (PDR) 0.64 0.02 0.34 0.05 0.55 0.03 0.68 0.06
τ (PDR) 0.04 0.11 0.85 0.55 0.26 0.13 −0.07 0.06
λ (PDR) 0.99 0.01 0.89 0.08 0.97 0.02 1.01 0.01
cIVC (PDR) 0.96 0.84 0.98 1.00
IVC (PDR) 0.97 0.95 0.99 1.00
π (SBS,I) 0.10 0.01 0.40 0.05 0.13 0.02 0.08 0.04
τ (SBS,I) 0.68 0.68 −0.25 0.10 1.21 1.80 −1.87 0.89
λ (SBS,I) 0.80 0.11 1.04 0.01 0.40 0.31 1.20 0.17
cIVC (SBS,I) 0.70 1.00 0.26 0.92
IVC (SBS,I) 0.97 1.00 0.91 0.99

Table 7.7: Estimated indicator validity and measurement parameters (error probability,
intercept and slope) for Turnover on a log scale under Model 2 (with standard errors);
model with SBS edited data for Turnover

45112 45190 45200 45400
parameter estimate s.e. estimate s.e. estimate s.e. estimate s.e.
π (VAT) 0.91 0.01 0.82 0.03 0.76 0.03 0.85 0.05
τ (VAT) −0.21 0.06 0.67 0.22 0.08 0.10 −0.20 0.26
λ (VAT) 0.99 0.01 0.90 0.03 0.99 0.02 0.99 0.04
cIVC (VAT) 0.98 0.96 0.98 0.97
IVC (VAT) 0.98 0.96 0.98 0.98
π (PDR) 0.64 0.02 0.34 0.05 0.54 0.03 0.68 0.06
τ (PDR) 0.11 0.12 0.85 0.55 0.29 0.13 −0.08 0.06
λ (PDR) 0.98 0.01 0.89 0.08 0.96 0.02 1.01 0.01
cIVC (PDR) 0.95 0.84 0.97 1.00
IVC (PDR) 0.97 0.95 0.99 1.00
π (SBS,E) 0.11 0.02 0.40 0.05 0.14 0.03 0.10 0.04
τ (SBS,E) −0.30 0.49 −0.25 0.10 0.72 0.90 0.08 0.84
λ (SBS,E) 0.98 0.07 1.04 0.01 0.70 0.16 0.94 0.17
cIVC (SBS,E) 0.83 1.00 0.68 0.88
IVC (SBS,E) 0.98 1.00 0.96 0.99
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bilities in all NACE groups (π̂ lies between 0.76 and 0.91), whereas the cor-
responding probabilities for PDR and SBS are smaller. In all NACE groups
except 45190, SBS has the smallest error probabilities, both before and after
automatic editing.

• Just as for Model 1, we find that automatic editing does not have a large
impact on the overall IVC of SBS Turnover. The error probabilities before
and after editing also do not differ significantly, and in some NACE groups
the probability of observing an error after editing is actually slightly larger.
On the other hand, we can see that after editing the intercept and slope pa-
rameters τ and λ for the SBS variable are closer to 0 and 1, respectively, in
all NACE groups except 45190, where no change occurs. In NACE groups
45112 and 45200, it is also seen that the conditional IVC for the error-prone
observations is improved by the editing procedure; in NACE group 45400
editing actually slightly reduces the IVC.

• Comparing the results of Models 1 and 2, it is seen that the λ values in Ta-
ble 7.5 are often closer to 1 than the corresponding values in Table 7.6 and
Table 7.7, in particular for the SBS variables. This is as expected, since
Model 1 estimates a single regression line for both the error-free and error-
prone observations, whereas τ and λ in Model 2 refer only to the error-prone
observations. Most of the exceptions to this rule occur for VAT, where error-
free observations in fact appear to be rare. It is also seen that the uncondi-
tional IVC values are nearly always closer to 1 under Model 2 than under
Model 1, both before and after editing.

Overall, we conclude that the effect of automatic editing on the measurement qual-
ity of SBS Turnover for these data is slightly larger than was suggested by the
results of Model 1, but is still fairly small. In particular, the error probabilities
in Table 7.6 and Table 7.7 suggest that the automatic editing process has success-
fully corrected only a small subset of the errors in SBS Turnover that were actually
present in these data.

7.5 Discussion

The results of both Model 1 and Model 2 for the data in our application suggest that,
according to our measurement quality indicators, the effect of automatic editing on
SBS Turnover is very limited. Looking at the data, this is not unexpected, because
in fact only a small number of Turnover values in our data set were changed during
the automatic editing process of Figure 7.1. This naturally leads to the question
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whether automatic editing has any added value for the Netherlands’ SBS. We be-
lieve that it does, but that this added value is mainly related to other quality criteria
that are not considered by the above measurement error models.

In particular, an important aim of automatic editing is to obtain a data set which
is consistent with respect to a pre-defined set of edit rules. The edit rules define
univariate and multivariate restrictions that would be expected to hold if the data
were error-free. Two examples of edit rules for SBS are:

Turnover ≥ 0;

Turnover − Total operating costs = Profit.

It should be noted that it is possible that an SBS observation satisfies all edit rules
while still containing one or more errors. On the other hand, an observation that
does not satisfy all edit rules certainly contains errors, but these errors might be
very small and therefore hardly affect the validity or bias as defined under Model 1
or 2. For instance, it is not uncommon for SBS data to contain so-called rounding
errors [see Scholtus (2011a) or Chapter 3 of this thesis].

Regarding the importance for NSIs of obtaining data that are consistent with
edit rules, Pannekoek and De Waal (2005) noted the following:

“Statistically speaking there is indeed hardly any reason to let a data set sat-
isfy all edits, other than the hope that enforcing internal consistency will
result in data of higher statistical quality. NSIs, however, have the responsi-
bility to supply data for many different academic and nonacademic users in
society. For the majority of these users, inconsistent data are incomprehen-
sible. They may reject the data as being an invalid source of information or
make adjustments themselves. This hampers the unifying role of an NSI in
providing data that are undisputed by different parties (...).”

Thus, even when automatic editing does not significantly improve the measurement
quality of a data set (in terms of validity and bias), it can still be useful for NSIs as
a relatively cheap way of obtaining consistent data.

On the other hand, the results of Model 2 do suggest that the automatic edit-
ing process has successfully corrected only a small subset of the errors in SBS
Turnover that were actually present in these data. While the validity of the vari-
ables after editing is quite close to 1, the remaining errors do appear to cause a
noticeable bias in some of the NACE groups. It may therefore be useful to apply
a measurement error model such as Model 2 during regular production to estimate
the effects on statistical output of errors that remain in the data after automatic edit-
ing. If these effects are significant, improved output may be estimated by applying
a correction for measurement errors. This correction requires a prediction of the
true value ηi, given one or more of the observed values yki and the estimated model
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parameters. For Model 1, a correction procedure was outlined in Chapter 6. For
Model 2, predicted values for η based on all observed data are actually computed
as part of the E step of the EM algorithm [see Robinson (2016)], so the extension
to a correction procedure is straightforward from a theoretical point of view.

Alternatively, Model 2 could be used as part of a selective editing procedure
during regular production to identify records that are likely to contain errors (ei-
ther before or after automatic editing) for manual follow-up. Having estimated the
model, one can compute the posterior probability that yki contains an error, taking
into account all observed data and the estimated model parameters; see Guarnera
and Varriale (2016). Note that for observations such as those in (7.10), these poste-
rior probabilities are equal to 0 or 1. In combination with a measure of the expected
error size (which could be derived from the predicted value of ηi under the model),
these posterior probabilities can provide a basis for selecting the observations that
are likely to contain the most important errors. See Di Zio and Guarnera (2013)
for a detailed discussion of the use of “intermittent-error” models for selective data
editing.

As it stands, Model 2 has some important limitations that were highlighted by
the above application. Firstly, the assumption that the true values and measurement
errors are normally distributed may often be violated in practice. It is not known
to what extent the maximum likelihood estimates for this model are robust to non-
normality. In principle, other versions of the model could be developed for different
distributions, but this has not been done yet. In fact, for many variables that occur
in business statistics (such as Turnover) a log-normal distribution is reasonable, in
which case the current model can be applied to the data after a logarithmic transfor-
mation. However, this does complicate the interpretation of the model parameters
τk and λk, as can be seen in (7.11) and (7.12). An interesting alternative solution
to handle non-normal data that is sometimes used in finite mixture models is to
model these non-normal distributions themselves as mixtures of two or more nor-
mal distributions, which leads to a “mixture of mixture models” (McLachlan and
Peel, 2000; Di Zio et al., 2007). It remains to be seen whether such an approach
would work in our situation (e.g., identifiability might be a problem).

The model also assumes that measurement errors in different observed vari-
ables are independent. In principle, this assumption could be relaxed, but this
would make the estimation procedure more complicated. Furthermore, for a given
number of observed variables K, only a limited number of dependencies can be
added before the model becomes under-identified.

In this application, we focussed on a single variable of interest (Turnover).
Since automatic editing – in particular: error localisation based on the Fellegi-Holt
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paradigm – is a multivariate procedure, it would actually be more interesting to
model several target variables simultaneously. A relatively straightforward exten-
sion of Model 2 could be made if errors for different variables of interest are inde-
pendent, but this assumption may often be unreasonable in practice. Without such
an assumption, the model quickly becomes very complex as more latent variables
are added (Guarnera and Varriale, 2016).

Finally, the maximum likelihood estimation procedure used here assumes that
the data consist of independent, identically distributed observations. It would be
good to extend the estimation procedure to take the effects of finite-population sam-
pling into account, as survey observations are hardly ever independent in practice.
In particular, this is likely to affect the standard errors of the estimated parameters.

7.6 Conclusion

In this chapter, we have applied two different latent variable models to estimate
and compare the measurement quality of survey data on Turnover from the Nether-
lands’ SBS before and after automatic editing. Model 1 is a structural equation
model, while Model 2 is a finite mixture model which takes into account the pos-
sibility that some observed values are error-free. In principle, the latter type of
model seems to be more suitable for SBS data. However, as indicated in Sec-
tion 7.5, Model 2 currently has some important limitations. We maintain that it is
useful to develop this model further to address these limitations. Several potential
practical applications of Model 2 in the context of automatic and selective editing
were discussed in Section 7.5.

In our application, we found that automatic editing methods had a minor effect
on the validity and bias of business survey data. Overall, the measurement quality
of the edited data was, at best, only marginally better than that of the input data.
Of course, these results are based on a single data set for a small number of NACE
groups. Also, the target variable Turnover is usually reported with relatively high
accuracy in the SBS survey. Thus, our findings may not extend to all applications
of automatic editing in business statistics.

Nevertheless, we can tentatively conclude that the main merit of automatic
editing may be that it provides consistent data at low costs, but that it often does
not significantly improve the measurement quality of individual variables in terms
of validity or bias. This suggests that it would be good to develop measurement
error models that can be used to estimate the effects of residual errors in edited
data during regular production, which could then be used to correct statistics for
measurement error, or to select observations for further manual editing. Model
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2 could be used as a starting point for the development of such a model for the
Netherlands’ SBS and for other applications in business statistics.

Appendix 7.A Asymptotic standard errors for Model 2

Asymptotic standard errors and confidence intervals for the estimated parameters
of Model 2 can be obtained from the following general result [see, e.g., Van der
Vaart (1998)]: under regularity conditions and assuming that the model is correct,
as n→ ∞ the complete-data maximum-likelihood estimates θ̂ based on ℓc in (7.9)
converge to a joint normal distribution with the true parameter values θ as mean
and a variance-covariance matrix given by

V(θ̂) = I−1
obs(θ̂) = −

(
∂2ℓc
∂θ∂θ′

)−1

,

where Iobs(θ̂) denotes the observed information matrix, i.e., minus one times the
Hessian matrix of second-order partial derivatives of ℓc(θ), evaluated at θ = θ̂. In
particular, asymptotic standard errors for the parameter estimates in θ̂ are given by
the square roots of the diagonal elements of V(θ̂).

With incomplete data, these standard errors will be inflated. Little and Rubin
(2002) describe a two-step procedure to obtain correct standard errors in this situ-
ation. Firstly, Iobs(θ̂) is replaced by its conditional expectation given the observed
data and the estimated parameters, the so-called complete information matrix. Let
Vcom(θ̂) denote the variance matrix that is obtained by inverting this complete in-
formation matrix. Secondly, according to formula (9.7) in Little and Rubin (2002),
the variance matrix of the incomplete-data maximum likelihood estimates is:

Vobs(θ̂) = Vcom(θ̂)(I−DM)−1.

Here, I denotes an identity matrix and DM is a matrix that describes the loss of
information due to having incomplete data. The latter matrix is directly related to
the rate of convergence of the EM algorithm. A numerical approximation to DM

can be obtained by applying a so-called Supplemented EM algorithm; see Little
and Rubin (2002, pp. 191–196) for details.

For model (7.5) with K = 3 observed variables, it can be derived from (7.9)
that V(θ̂) based on complete data is a block-diagonal matrix of the following form:

V(π̂1, π̂2, π̂3)

V(β̂, σ̂2) 0

V(τ̂1, λ̂1, σ̂
2
1)

0 V(τ̂2, λ̂2, σ̂
2
2)

V(τ̂3, λ̂3, σ̂
2
3)

 ,
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where

V(π̂1, π̂2, π̂3) =


π̂1(1−π̂1)

n 0 0

0 π̂2(1−π̂2)
n 0

0 0 π̂3(1−π̂3)
n


and

V(β̂, σ̂2) =

(
σ̂2 (

∑n
i=1 xix

′
i)
−1 0

0′ 2σ̂4

n

)
and

V(τ̂k, λ̂k, σ̂
2
k) =


σ̂2
k

nk∆k

∑n
i=1 zkiη

2
i − σ̂2

k
nk∆k

∑n
i=1 zkiηi 0

− σ̂2
k

nk∆k

∑n
i=1 zkiηi

σ̂2
k

∆k
0

0 0
2σ̂4

k
nk

 ,

with ∆k =
∑n

i=1 zkiη
2
i − 1

nk
(
∑n

i=1 zkiηi)
2. The standard errors reported in Sec-

tion 7.4.2 were obtained from these expressions by applying Little and Rubin’s
two-step procedure to correct for missing information.

Note: For the π and σ2 parameters, standard errors based on the asymptotic
normal distribution may be misleading in practice unless the sample size is very
large. Little and Rubin (2002) note that a better approach is to first form confidence
intervals for the transformed parameters log π/(1− π) and log σ2 – for which the
normal approximation works better in practice – and then transform the end points
of these intervals back to obtain confidence intervals for the original parameters.
We also used this approach. This made little difference for the π parameters in
our application, as none of the point estimates for these parameters were close to
0 or 1. The alternative approach was more useful for some of the σ2 parameters,
but these are not discussed separately in this chapter. For simplicity, we therefore
report standard errors based on the direct approach.
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Chapter 8

Summary, Conclusions and
Discussion

8.1 Summary and conclusions

In this thesis, five chapters of original research have been presented. Chapters 3–
5 focussed on new methods for automatic editing. Chapters 6 and 7 focussed on
applications of measurement error models.

In Chapter 3, we looked at deductive correction methods for systematic errors.
Correcting systematic errors in a separate step at the beginning of a data editing
process can improve the efficiency of data editing as well as the quality of the edited
data. This is true because, if a systematic error can be corrected accurately by a
deductive rule, it does not have to be treated later on by a human editor or a more
complex algorithm for automatic error localisation. This means that editors and
more complex algorithms can focus their attention on cases with more complicated
error structures, where their contribution is more likely to be worthwhile.

With the above aims in mind of improving efficiency and quality, we have
developed two new deductive methods for correcting two errors that are known
to occur in data of the so-called Structural Business Statistics (SBS) at Statistics
Netherlands: sign errors and rounding errors. Sign errors occur for variables in a
particular subsection of the questionnaire (the so-called profit-and-loss account),
while rounding errors can occur throughout the data. Both methods require an al-
gorithm that is more complex than a simple if-then rule, but they are still relatively
easy and cheap to implement. Theoretical properties of the algorithms were inves-
tigated. By way of illustration, both algorithms were applied to real data from the
Netherlands’ SBS of 2007. For these data, we found that the deductive method
for sign errors reduced the number of records with inconsistent profit-and-loss ac-
counts by about twenty per cent. We also found that, of all records that contained
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inconsistencies with respect to the edit rules, about one in five contained at least
one rounding error. Moreover, by resolving these rounding errors, the number of
violated balance edit rules could be reduced by about thirteen per cent. These re-
sults show that these deductive methods can achieve a substantial reduction of the
amount of editing that remains to be done by editors or complex error localisation
algorithms.

Chapters 4 and 5 focussed on error localisation for random errors. Two gen-
eralisations of the Fellegi-Holt paradigm were proposed that aim to improve the
quality of automatically-edited data. Both generalisations address a different limi-
tation of the Fellegi-Holt paradigm.

The starting point for Chapter 4 was the idea that some of the systematic dif-
ferences that have been found between manual and automatic editing may be ex-
plained by the fact that human editors make use of soft edits as well as hard edits,
whereas the Fellegi-Holt paradigm for automatic editing assumes that only hard
edit rules occur. Under the Fellegi-Holt paradigm, existing soft edits have to be
either ignored or treated as hard edits during automatic error localisation. We pro-
posed a new formulation of the error localisation problem that can distinguish be-
tween hard and soft edit rules. The new approach involves solving a minimisation
problem that is a generalisation of the problem of Fellegi and Holt, with an ex-
tra term that measures the extent to which soft edit rules are violated. The new
problem can be solved by an extension of the existing error localisation algorithm
of De Waal and Quere (2003). A simulation study was conducted with synthetic
data. For these data, it was found that the new error localisation approach achieved
better results than the Fellegi-Holt paradigm, both in terms of false positives (cor-
rect values that were identified as erroneous by the algorithm) and false negatives
(erroneous values that were identified as correct).

The Fellegi-Holt paradigm and the underlying model based on Naus et al.
(1972) tacitly assume that errors independently affect one variable at a time. By
contrast, human editors often make adjustments to the data that involve more than
one variable at a time. It is in fact likely that respondents often commit errors
that simultaneously affect several variables. In Chapter 5 we therefore introduced
a generalised error localisation problem in which the assumption is relaxed that
errors affect one variable at a time. This problem is based on a new minimisa-
tion criterion which involves the number of required edit operations rather than the
number of changed values. Here, each edit operation is a well-defined elementary
adjustment that can be made to a record to correct one particular error, which might
involve changing the values of one, two, or more variables simultaneously. We sug-
gested to choose these edit operations such that they mimic as closely as possible
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the manual corrections made by editors. The Fellegi-Holt-based error localisation
problem is in fact a special case of the new problem, obtained by restricting the set
of admissible edit operations to one particular class (i.e., operations that impute a
new value for a single variable).

An algorithm was developed for solving the new error localisation problem.
This algorithm was used in a simulation study with synthetic data to compare the
new approach to Fellegi and Holt’s original error localisation problem. The results
of this study indicated that the new method can be used to achieve a significant im-
provement of the quality of automatically-edited data (again in terms of both false
negatives and false positives). This does require that all (or nearly all) appropriate
edit operations are included. Finding the appropriate edit operations for a given
application is not trivial; we provided some suggestions on how this might be done
in practice.

Turning to measurement error models, in Chapter 6 we used a structural equa-
tion model (SEM) to estimate the quality of administrative and survey data for
official statistics. It was shown how both the indicator validity and intercept bias
of administrative and survey variables can be estimated in this way. In particular,
the indicator validity can be used as a measure to decide whether the administra-
tive concept is sufficiently related to the true variable of interest to be of use. In
cases where the validity is high but significant intercept bias occurs, a correction
formula can be derived from the SEM by predicting the true value of the variable of
interest from the observed value. To identify the model, we took a random subsam-
ple of our original observations and attempted to measure the true values for these
units (an audit sample). The inclusion of an audit sample was necessary for the
estimation of the true intercept bias and true correction formulas for the observed
variables, but not for the estimation of indicator validity.

The methodology was applied to real data at Statistics Netherlands to esti-
mate the validity and intercept bias of value-added tax (VAT) turnover for short-
term statistics (monthly or quarterly statistics on the development of the economy).
SEMs were fitted to linked data from three administrative sources (VAT, the Profit
Declaration Register and the General Business Register) and one survey (SBS).
Additional data for an audit sample were obtained by re-editing the survey data.
It was found that the target variable turnover was measured with indicator validity
close to 1 in all data sources. However, often the VAT data did suffer from substan-
tial intercept bias. For cases where intercept bias occurred, a correction formula
was derived from the SEM. We simulated an application of the estimated correction
formulas from the SEM to publication figures for the short-term statistics. As ex-
pected, it was found that the correction hardly affected the estimated annual growth
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rates but it did have a substantial effect on the estimated annual turnover levels.
Finally, in Chapter 7 we used measurement error modelling to gain insight into

the quality of edited data. The indicator validity and bias of observed variables in
a data set of the Netherlands’ SBS before and after automatic editing were eval-
uated and compared. We analysed the data using two different models: an SEM
and a contamination model. The latter model seemed more appropriate for the
data at hand, but its current formulation does have some limitations that require
further development. In our application, the effect of automatic editing on data
quality in terms of validity and bias turned out to be very limited. In particular, the
models suggested that the data after editing still contained a substantial amount of
measurement error.

8.2 Potential applications

The results in this thesis may be applied to improve the production process for
official statistics in several ways. In this section, we will mention some potential
applications and discuss one of them in more detail.

The new editing methods introduced in Chapters 3–5 have been developed with
the aim of improving the effectiveness of automatic editing. The underlying idea
is that by improving the quality of automatically-edited data, it will be possible to
change the balance between manual and automatic work in an editing process in
favour of automatic editing (Pannekoek et al., 2013). By reducing the amount of
manual editing, the efficiency, timeliness and reproducibility of editing processes
can be increased.

Although these methods were not developed with the editing of administra-
tive data in mind per se, they could be very useful in that context. As noted in
Section 2.2.2, the size of most administrative data sets means that they cannot be
processed effectively using traditional selective editing strategies. A feasible edit-
ing process for administrative data should therefore consist mostly of methods that
can be automated, i.e., deductive correction rules, automatic localisation of random
errors, and imputation. The main tasks of subject-matter specialists would then be
to set and, if necessary, adjust the parameters of the automatic editing procedures,
and to check the plausibility of the outcome of the automated process. For the latter
task, selective or macro-editing methods could be used to detect and correct influ-
ential errors that may have slipped through. For economic statistics, the specialists
may additionally check the data of a few very large businesses on a regular basis.
In the past, editing processes of this form have been advocated and to some ex-
tent realised for survey data (Granquist and Kovar, 1997; Pannekoek et al., 2013).
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Probably, they are even more relevant for the editing of administrative data.

The measurement error model discussed in Chapter 6 can be used to estimate
the indicator validity of variables in linked administrative and survey data. In the
presence of additional “gold standard” data for a random subsample of units in the
linked data set, the method also provides an estimate of the intercept bias of each
observed variable. Once the model parameters have been estimated, they can be
used for various purposes.

Firstly, if different sources (administrative data sets or surveys) are available
for the same variable of interest, these can be compared in terms of indicator va-
lidity and intercept bias. This situation can arise when a statistical office wants
to produce new statistical output or change the input data of an existing statistical
process. In particular, it is relevant for countries that are considering to switch from
a survey-based to a (partly) register-based population census (Berka et al., 2012).
All else being equal, the source with the validity that is closest to 1 and/or the least
amount of intercept bias is to be preferred. A more quantitative approach can be
obtained by using the outcome of a measurement error model to compare different
proposed estimators in terms of mean squared error (MSE). This makes it possi-
ble to compare, for instance, a variable with a validity of 0.70 in an administrative
source that covers almost the entire population (large measurement error, virtually
no sampling error) to a variable with a validity of 0.99 in a small sample survey
(large sampling error, virtually no measurement error).

Secondly, an estimated error model can be used to obtain a model-based ad-
justment to statistical results, to correct for the effects of measurement errors in
the data. The attenuation formula for correlation coefficients that was discussed in
Section 1.4 provides a well-known example. In Section 6.3.4, we applied a cor-
rection formula derived from an SEM to short-term statistics (turnover levels and
growth rates), to correct for systematic bias in the observed VAT turnover values.
Alternatively, predicted true values could be derived directly from the model and
used as imputations instead of the originally observed values.

A model-based correction may reduce the MSE of the statistical output, but
only if the model is appropriate for the application at hand and if the parameters of
the model can be estimated with sufficient accuracy. This depends on the type of
application. For example, when a model is used to impute predicted true values,
the relation of the imputed variable to other variables may be distorted if these
variables have not been included in the model (either as covariates or as other target
variables). A similar problem is known to occur in the context of mass imputation
(Kooiman, 1998; De Waal, 2015).

A third possible application of measurement error models was illustrated in
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Chapter 7: evaluating the effect of an editing process on data quality. This infor-
mation can be useful during the design of a new editing process: to compare the
results of different editing approaches and to help decide how much effort should
be put into each process step. It is also useful once an editing process has been set
up, to check whether it is working as expected. In this case, a contamination model
is more appropriate than an SEM, as it is more in line with the “intermittent-error”
assumption of most data editing methods. It should be noted that an editing pro-
cess may be important for other aspects of data quality that are not captured by a
measurement error model, such as the fact that the edited data are consistent with
a set of edit rules (see Section 7.5).

In applications like the one in Chapter 7, the model provides an estimate of the
amount of measurement error that remains in the data after editing. In principle, it
is therefore possible to correct statistical output for this residual measurement error,
with the above-mentioned caveat that the model should be appropriate for the data
and estimated with sufficient accuracy. When these conditions are satisfied, this
approach could be used to either improve the quality of statistics or to reduce the
costs of a statistical process while retaining the same quality. We will now discuss
this in some more detail.

Currently at Statistics Netherlands, the editing process for survey data in most
economic statistics consists of the following main steps (in order):

1. deductive editing of systematic errors (e.g., unit of measurement errors);

2. selective manual editing of a cut-off sample of records that are likely to con-
tain the most important errors;

3. automatic editing of the remaining records;

4. macro-editing, and, if necessary, manual follow-up of remaining influential
errors.

The methods used in these steps were reviewed in Section 2.2. The third step
(automatic editing) is sometimes omitted; in that case the non-selected records are
not edited.

An editing process of this form has two drawbacks. Firstly, as noted above,
the process is not suitable for administrative data sets that contain a substantial
number of influential errors, because it would be too costly and/or time-consuming
to edit these errors manually. Secondly, the effect on statistical output of errors that
remain in the data at the end of the editing process cannot be evaluated. Without
further assumptions that cannot be tested in practice, it is not possible to infer the
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amount of measurement error in the non-selected part of the data from the part that
has been edited, because the selection was made by cut-off sampling.

A potential alternative editing process that does not have these drawbacks could
be set up as follows:

1. deductive editing of systematic errors;

2. automatic editing of all1 records;

3. macro-editing to detect a few remaining influential errors and selective man-
ual editing of a (small) probability sample of records;

4. estimating a measurement error model for the edited data and using the esti-
mated model parameters to evaluate the quality of intended statistical output.

In step 3, probabilistic selective editing is applied as proposed by Ilves and
Laitila (2009); see also Section 2.2.1. In this case, the main goal of manual editing
is not to correct all influential errors, but rather to obtain a second, improved mea-
surement of the variables in the data set that will help us to estimate the amount of
measurement error that remains in the data after automatic editing. In other words,
probabilistic selective editing is used to obtain an audit sample.

In step 4, a measurement error model is fitted to the automatically-edited data,
with the manually-edited variables included for the cases where they are available.
To obtain an identified model, the edited data should be linked to auxiliary data
from an independent administrative source. If an SEM like the one in Chapter 6
is used in this step, then the inclusion of an audit sample of manually-edited “gold
standard” data is required for model identification. If a contamination model is
used then, as noted in Chapter 7, an audit sample is not strictly necessary. However,
it could still be useful to include these data to improve the accuracy of parameter
estimates and to provide an opportunity for testing some of the model assumptions.

Having obtained an estimate of the amount of residual measurement error after
automatic editing (in terms of error probability, intercept bias and indicator valid-
ity), we can then evaluate the effect of these remaining errors on intended statistical
output. If the effect is large, we may go back and perform some additional macro-
editing, or we may apply a model-based adjustment to the output to correct for
measurement error.

This alternative editing process has not yet been tested. A question that remains
to be investigated is whether sufficiently accurate estimates can be obtained of

1In practice, it is likely that a few records cannot be edited automatically due to computational
problems. These records could be added to the set that is edited manually, or they could even be
treated as non-response.
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the parameters of the measurement error model, based on a realistic number of
manually-edited cases. This is particularly important if a model-based correction
formula is to be used for the statistical output. Furthermore, this approach seems
to be feasible mainly in cases where the statistical output consists of one or a few
target variables (e.g., the short-term statistics on turnover). It is not immediately
clear how it could be applied, for instance, to the structural business statistics which
contain dozens of variables.

8.3 Discussion

Over the past years, administrative data have increasingly been used in official
statistics and academic research to replace traditional surveys. This trend is likely
to continue in the future. It is important to realise that administrative data nearly
always suffer from measurement errors. In this sense, they are just like surveys.
In fact, the problem of measurement errors may be even more important for ad-
ministrative data than for surveys because administrative concepts can differ from
statistical concepts.

The methods that have been discussed and developed in this thesis can be ap-
plied to address the problem of measurement errors in both administrative data and
survey data. We have looked both at methods that try to correct individual errors
(editing) and methods that try to model the overall effect of measurement errors
(estimation). We will now summarise the main contributions of this thesis in rela-
tion to the three points that were mentioned in Section 1.1. We will also point out
some topics for future research.

1. Increasing the usefulness of methods for automatic editing
For the editing approach, we have worked on automatic editing methods. Currently,
methods for automatic editing of random errors are used only to a limited extent at
Statistics Netherlands – and even less at most other national statistical institutes –
because the underlying assumptions of these methods are rather restrictive. In par-
ticular, the Fellegi-Holt paradigm for finding random errors is based on an implicit
measurement error model that assumes that errors affect one variable at a time,
that they are independent across variables and that the probability of observing a
variable in error does not depend on the underlying true value (see Section 2.4).
Furthermore, all subject-matter information that is relevant for finding these errors
is supposed to be available in the form of hard edit rules. These assumptions are
rarely, if ever, satisfied in practice.

The new methods for automatic error localisation that were developed in Chap-
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ters 4 and 5 are more flexible than existing methods. The method of Chapter 4 can
handle additional subject-matter information in the form of soft edit rules. The
method of Chapter 5 can handle a more general class of errors than the original
Fellegi-Holt paradigm that includes errors that affect multiple variables simultane-
ously. This added flexibility can be exploited to bring the results of automatic edit-
ing closer to those of manual editing. This means that NSIs could use these meth-
ods to reduce the amount of manual work in data editing processes and increase
the amount of automatic editing. This will increase the efficiency and timeliness of
statistical production processes. Furthermore, the attention of subject-matter spe-
cialists could then be focussed more on editing the most difficult cases, which will
improve the quality of the edited data and hence the quality of statistical output.

The added flexibility of these new methods for automatic editing also means
that they are more complicated to set up in practice. For instance, the formulation
of the generalised error localisation problem in Chapter 5 involves a set of “ad-
missible edit operations” which has to be chosen for each application, and a set
of weights that have to be assigned to these operations. To realise the potential of
these new editing methods, more research is therefore needed to test these methods
on realistic data and to develop simple recommendations for their use in practice.

Some of the work in Chapters 4 and 5 was based on existing ideas. The for-
mulation of the error localisation problem that was proposed in Chapter 4 makes
use of a well-known technique in mathematical optimisation (accounting for soft
restrictions by adding a term to the target function). The generalised error local-
isation problem in Chapter 5 has a strong similarity to the so-called Levenshtein
distance that is used for approximate string matching. As far as we are aware, our
application of these ideas to statistical data editing is new. Moreover, the context
of error localisation in statistical data has some specific features so that we had to
develop new algorithms for solving these error localisation problems. For instance,
the requirement in Chapter 5 that the edited record must satisfy a set of hard edit
rules has no counterpart in standard applications of the Levenshtein distance. Nev-
ertheless, an interesting topic for future research could be to improve the efficiency
of the algorithms that we have proposed here by adapting results from the fields of
mathematical optimisation with soft restrictions (Chapter 4) and distance compu-
tation in approximate string matching (Chapter 5).

2. Constructing a measurement error model that is useful for official statistics
For the estimation approach, we noted in Chapter 1 that applications in official
statistics often involve target parameters such as population means and totals of
“factual” variables, for which true values rather than true scores (as defined in Sec-
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tion 1.2.3) are of interest. For these applications, it is important to estimate the re-
lation between the scale of an observed variable and the true scale of the underlying
(latent) target variable. By contrast, most social-science applications deal with bi-
variate and multivariate statistics (e.g., correlations) about “non-factual” phenom-
ena, for which it is sufficient to model the latent variables on a standardised scale
or on an arbitrarily chosen reference scale. Because of this gap, some useful mod-
elling techniques that have been developed in the social and behavioural sciences
are currently not applied in official statistics as often as they could be. This holds
in particular for the use of SEMs to account for measurement errors in observed
variables.

In Chapter 6, we used an SEM to estimate the effects of measurement errors
in linked administrative and survey data on several factual variables. To identify
the true scales of the latent variables in this SEM, we introduced the assumption
that “gold standard” observations could be obtained for a random subsample of
the original data set (an audit sample). This assumption was suggested previously
by Sobel and Arminger (1986). For the application in Chapter 6, we generalised
the method of Sobel and Arminger to allow for complex sample designs and non-
normality of the data by using Pseudo Maximum Likelihood (PML). Although the
PML method for estimating SEMs under complex sampling and non-normal data is
well established, its application in combination with audit data that are missing by
design required some non-trivial adjustments to the method of Sobel and Arminger
(1986). As far as we are aware, the combined method as described in Chapter 6 is
new. This method allows for a wider use of SEMs in official statistics. Such models
can be useful in official statistics to assess the suitability of administrative data and
other new data sources, as illustrated by our application in Chapter 6. Several other
potential uses of measurement error models in official statistics were described in
Section 8.2, which shows that they can be used to evaluate the accuracy of statistics
and to obtain statistical output of higher quality.

The SEM of Chapter 6 is an instance of a congeneric measures design. As was
shown in Section 2.3, this type of model can be used to estimate the indicator valid-
ity and – provided that an audit sample is included – the intercept bias of observed
variables, but not their true-score validity or reliability. If the latter parameters are
of interest, more complicated designs such as the multitrait-multimethod (MTMM)
design should be used. These designs were originally developed for survey data. In
Section 2.3.4, we discussed several possible approaches to identify and estimate an
MTMM design for administrative data. For future research, it would be interesting
to test these approaches in practice.
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3. Using a measurement error model to evaluate the effects of automatic editing
The traditional approach to evaluate the quality of automatic editing works by com-
paring automatically-edited data to manually-edited data under the assumption that
the latter data are error-free. This assumption is not realistic. In Chapter 7, we have
shown that the effects of automatic editing on the amount of measurement error in
survey data can be evaluated without making this assumption, again by modelling
the errors in a linked data set of administrative and survey variables. The results
of this application suggested that a contamination model may be more appropriate
than an SEM for modelling measurement errors in most of the sources that were
examined in this thesis (both survey and administrative data), as these all appear
to contain a non-negligible fraction of observations without errors. An additional
advantage of the contamination model is that this model can be identified without
an audit sample even when true values are of interest.

The contamination model that was estimated in Chapter 7 is a generalisation
of the model of Guarnera and Varriale (2016). Our generalisation accounts for a
possible bias due to a difference in scale between each observed variable and the
underlying target variable. In the experience of Statistics Netherlands so far, such
differences in scale often occur for administrative variables. Before this model
could be applied in practice at Statistics Netherlands, more work is needed. Firstly,
the model should be extended to more than one target variable. Secondly, the sen-
sitivity of the model should be investigated to violations of the assumption that the
errors in different observed variables are independent, and possible extensions of
the model should be developed that avoid this assumption. Thirdly, an estimation
procedure should be developed for this model that is robust to non-normal data
and/or data that arise from complex sampling designs. For this, it may be pos-
sible to develop a variation of the PML method that is used for SEMs. In fact,
the ultimate outcome of the above refinements may be a model that is a “contam-
inated SEM”, i.e., a structural equation model that includes a distinction between
observations with and without errors on the observed variables.

As the potential applications discussed in Section 8.2 show, both the editing and
estimation approaches can be useful for official statistics. In fact, we have argued
in Section 2.5 that an approach that combines the two approaches (as suggested
in Section 8.2) may lead to a production process for official statistics that is more
efficient and timely than the current practice and also produces better statistical
output. Moreover, such a combined approach may be the only effective way to
handle measurement errors in large administrative data sets. It is clear that more
research is needed before this combined approach could be applied in practice. We
hope that the contents of this thesis will provide inspiration for this research.

203





Bibliography

Agrawal, R. and R. Srikant (1994). Fast Algorithms for Mining Association Rules.
Technical report, IBM Almaden Research Center, San Jose, California.

Al-Hamad, A., D. Lewis, and P. L. N. Silva (2008). Assessing the Performance
of the Thousand Pounds Automatic Editing Procedure at the Office for National
Statistics and the Need for an Alternative Approach. Working Paper No. 21,
UN/ECE Work Session on Statistical Data Editing, Vienna.

Allison, P. D. (1987). Estimation of Linear Models with Incomplete Data. Socio-
logical Methodology 17, 71–103.

Alwin, D. F. (2007). Margins of Errors. New York: John Wiley & Sons.

Andrews, F. M. (1984). Construct Validity and Error Components of Survey Mea-
sures: A Structural Modeling Approach. Public Opinion Quarterly 48, 409–442.

Arbués, I., P. Revilla, and D. Salgado (2013). An Optimization Approach to Selec-
tive Editing. Journal of Official Statistics 29, 489–510.

Bakker, B. F. M. (2011a). Micro-Integration. Method Series, Statistics Nether-
lands, The Hague.

Bakker, B. F. M. (2011b). Micro-Integration: State of the Art. In ESSnet on Data
Integration, Report on WP1, pp. 77–107.

Bakker, B. F. M. (2012). Estimating the Validity of Administrative Variables. Sta-
tistica Neerlandica 66, 8–17.

Bakker, B. F. M. and P. J. H. Daas (2012). Methodological Challenges of Register-
Based Research. Statistica Neerlandica 66, 2–7.

Bakker, B. F. M. and L. Kuijvenhoven (2010). Registers en Sociaalwetenschap-
pelijk Onderzoek: een Geslaagde Combinatie? In Bakker and Kuijvenhoven
(Eds.), Registers in Sociaalwetenschappelijk Onderzoek – Mogelijkheden en
Valkuilen, pp. 7–14. Statistics Netherlands/Vrije Universiteit. In Dutch.

205



BIBLIOGRAPHY

Banff Support Team (2003). Functional Description of the Banff System for Edit
and Imputation. Technical report, Statistics Canada.

Bankier, M. and S. Crowe (2009). Enhancements to the 2011 Canadian Census
E&I System. Working Paper No. 15, UN/ECE Work Session on Statistical Data
Editing, Neuchâtel.

Bankier, M., M. Lachance, and P. Poirier (2000). 2001 Canadian Census Minimum
Change Donor Imputation Methodology. Working Paper No. 17, UN/ECE Work
Session on Statistical Data Editing, Cardiff.

Bassi, F., J. A. Hagenaars, M. A. Croon, and J. K. Vermunt (2000). Estimating
True Changes when Categorical Panel Data are Affected by Uncorrelated and
Correlated Classification Errors. Sociological Methods and Research 29, 230–
268.

Baumgartner, H. and J.-B. E. M. Steenkamp (1998). Multi-Group Latent Vari-
able Models for Varying Numbers of Items and Factors with Cross-National and
Longitudinal Applications. Marketing Letters 9, 21–35.
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Boskovitz, A., R. Goré, and P. Wong (2005). Data Editing and Logic. Working
Paper No. 33, UN/ECE Work Session on Statistical Data Editing, Ottawa.

Bound, J., C. Brown, and N. Mathiowetz (2001). Measurement Error in Survey
Data. In Heckman and Leamer (Eds.), Handbook of Econometrics, Volume 5,
pp. 3705–3843. Amsterdam: Elsevier.

Brancato, G., S. Macchia, M. Murgia, M. Signore, G. Simeoni, K. Blanke,
T. Körner, A. Nimmergut, P. Lima, R. Paulino, and J. H. P. Hoffmeyer-Zlotnik

207



BIBLIOGRAPHY

(2006). Handbook of Recommended Practices for Questionnaire Development
and Testing in the European Statistical System. Luxembourg: Eurostat.

Bruni, R. (2004). Discrete Models for Data Imputation. Discrete Applied Mathe-
matics 144, 59–69.

Bruni, R. (2005). Error Correction for Massive Datasets. Optimization Methods
and Software 20, 297–316.

Campbell, D. T. and D. W. Fiske (1959). Convergent and Discriminant Validation
by the Multitrait-Multimethod Matrix. Psychological Bulletin 56, 81–105.

Carroll, R. J., D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu (2006). Mea-
surement Error in Nonlinear Models: A Modern Perspective (Second ed.). Boca
Raton: Chapman & Hall/CRC.

Casado Valero, C., F. Del Castillo Cuervo-Arango, J. Mateo Ayerra, and A. De
Santos Ballesteros (1996). Quantitative Data Editing: Quadratic Programming
Method. Presented at the COMPSTAT 1996 Conference, Barcelona.
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Summary

Data that are collected for the production of official statistics or, more generally, for
statistical analyses nearly always contain measurement errors. National statistical
institutes, other statistical agencies and academic researchers have therefore devel-
oped methods to handle error-prone data. Two broad classes of approaches can be
distinguished: editing methods that aim to identify and correct individual errors in
the data and estimation methods that try to correct for measurement errors at the
analysis stage, without adjusting the data themselves. The aim of this thesis was
to contribute to the development of both approaches for dealing with measurement
errors, with a particular focus on their extension and application to large data sets
from administrative sources.

In particular, the following points have been addressed in this thesis. Firstly,
current methods for automatic data editing – based on the seminal work of Fellegi
and Holt (1976) – have limited practical applicability because they are based on
rather restrictive assumptions. In this thesis, two new methods for automatic edit-
ing have been developed that relax some of these assumptions. Secondly, we have
discussed the estimation of measurement error models with latent variables in an
official-statistics context. Here, often univariate descriptive statistics such as pop-
ulation totals and means are of interest. It was demonstrated how latent-variable
models could be used to assess the suitability of new data sources for official statis-
tics, to gain better insight into the accuracy of statistics and to improve the quality
of statistical output. Thirdly, an application at Statistics Netherlands was described
in which a measurement error model was used to compare the quality of data before
and after an automatic editing procedure.

Having given this brief overview, we now provide a more detailed summary
of the contents of this thesis. In total, five chapters of original research have been
presented in this thesis. Chapters 3–5 focussed on new methods for automatic
editing. Chapters 6 and 7 focussed on applications of measurement error models.

In Chapter 3, we looked at deductive correction methods for systematic errors.
Correcting systematic errors in a separate step at the beginning of a data editing
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process can improve the efficiency of data editing as well as the quality of the edited
data. This is true because, if a systematic error can be corrected accurately by a
deductive rule, it does not have to be treated later on by a human editor or a more
complex algorithm for automatic error localisation. This means that editors and
more complex algorithms can focus their attention on cases with more complicated
error structures, where their contribution is more likely to be worthwhile.

With the above aims in mind of improving efficiency and quality, we have
developed two new deductive methods for correcting two errors that are known
to occur in data of the so-called Structural Business Statistics (SBS) at Statistics
Netherlands: sign errors and rounding errors. Sign errors occur for variables in a
particular subsection of the questionnaire (the so-called profit-and-loss account),
while rounding errors can occur throughout the data. Both methods require an al-
gorithm that is more complex than a simple if-then rule, but they are still relatively
easy and cheap to implement. Theoretical properties of the algorithms were inves-
tigated. By way of illustration, both algorithms were applied to real data from the
Netherlands’ SBS of 2007. For these data, we found that the deductive method
for sign errors reduced the number of records with inconsistent profit-and-loss ac-
counts by about twenty per cent. We also found that, of all records that contained
inconsistencies with respect to the edit rules, about one in five contained at least
one rounding error. Moreover, by resolving these rounding errors, the number of
violated balance edit rules could be reduced by about thirteen per cent. These re-
sults show that these deductive methods can achieve a substantial reduction of the
amount of editing that remains to be done by editors or complex error localisation
algorithms.

Chapters 4 and 5 focussed on error localisation for random errors. Two gen-
eralisations of the Fellegi-Holt paradigm were proposed that aim to improve the
quality of automatically-edited data. Both generalisations address a different limi-
tation of the Fellegi-Holt paradigm.

The starting point for Chapter 4 was the idea that some of the systematic dif-
ferences that have been found between manual and automatic editing may be ex-
plained by the fact that human editors make use of soft edits as well as hard edits,
whereas the Fellegi-Holt paradigm for automatic editing assumes that only hard
edit rules occur. Under the Fellegi-Holt paradigm, existing soft edits have to be
either ignored or treated as hard edits during automatic error localisation. We pro-
posed a new formulation of the error localisation problem that can distinguish be-
tween hard and soft edit rules. The new approach involves solving a minimisation
problem that is a generalisation of the problem of Fellegi and Holt, with an ex-
tra term that measures the extent to which soft edit rules are violated. The new
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problem can be solved by an extension of the existing error localisation algorithm
of De Waal and Quere (2003). A simulation study was conducted with synthetic
data. For these data, it was found that the new error localisation approach achieved
better results than the Fellegi-Holt paradigm, both in terms of false positives (cor-
rect values that were identified as erroneous by the algorithm) and false negatives
(erroneous values that were identified as correct).

The Fellegi-Holt paradigm and the underlying model based on Naus et al.
(1972) tacitly assume that errors independently affect one variable at a time. By
contrast, human editors often make adjustments to the data that involve more than
one variable at a time. It is in fact likely that respondents often commit errors
that simultaneously affect several variables. In Chapter 5 we therefore introduced
a generalised error localisation problem in which the assumption is relaxed that
errors affect one variable at a time. This problem is based on a new minimisa-
tion criterion which involves the number of required edit operations rather than the
number of changed values. Here, each edit operation is a well-defined elementary
adjustment that can be made to a record to correct one particular error, which might
involve changing the values of one, two, or more variables simultaneously. We sug-
gested to choose these edit operations such that they mimic as closely as possible
the manual corrections made by editors. The Fellegi-Holt-based error localisation
problem is in fact a special case of the new problem, obtained by restricting the set
of admissible edit operations to one particular class (i.e., operations that impute a
new value for a single variable).

An algorithm was developed for solving the new error localisation problem.
This algorithm was used in a simulation study with synthetic data to compare the
new approach to Fellegi and Holt’s original error localisation problem. The results
of this study indicated that the new method can be used to achieve a significant im-
provement of the quality of automatically-edited data (again in terms of both false
negatives and false positives). This does require that all (or nearly all) appropriate
edit operations are included. Finding the appropriate edit operations for a given
application is not trivial; we provided some suggestions on how this might be done
in practice.

Turning to measurement error models, in Chapter 6 we used a structural equa-
tion model (SEM) to estimate the quality of administrative and survey data for
official statistics. It was shown how both the indicator validity and intercept bias
of administrative and survey variables can be estimated in this way. In particular,
the indicator validity can be used as a measure to decide whether the administra-
tive concept is sufficiently related to the true variable of interest to be of use. In
cases where the validity is high but significant intercept bias occurs, a correction
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formula can be derived from the SEM by predicting the true value of the variable of
interest from the observed value. To identify the model, we took a random subsam-
ple of our original observations and attempted to measure the true values for these
units (an audit sample). The inclusion of an audit sample was necessary for the
estimation of the true intercept bias and true correction formulas for the observed
variables, but not for the estimation of indicator validity.

The methodology was applied to real data at Statistics Netherlands to esti-
mate the validity and intercept bias of value-added tax (VAT) turnover for short-
term statistics (monthly or quarterly statistics on the development of the economy).
SEMs were fitted to linked data from three administrative sources (VAT, the Profit
Declaration Register and the General Business Register) and one survey (SBS).
Additional data for an audit sample were obtained by re-editing the survey data.
It was found that the target variable turnover was measured with indicator validity
close to 1 in all data sources. However, often the VAT data did suffer from substan-
tial intercept bias. For cases where intercept bias occurred, a correction formula
was derived from the SEM. We simulated an application of the estimated correction
formulas from the SEM to publication figures for the short-term statistics. As ex-
pected, it was found that the correction hardly affected the estimated annual growth
rates but it did have a substantial effect on the estimated annual turnover levels.

Finally, in Chapter 7 we used measurement error modelling to gain insight into
the quality of edited data. The indicator validity and bias of observed variables in
a data set of the Netherlands’ SBS before and after automatic editing were eval-
uated and compared. We analysed the data using two different models: an SEM
and a contamination model. The latter model seemed more appropriate for the
data at hand, but its current formulation does have some limitations that require
further development. In our application, the effect of automatic editing on data
quality in terms of validity and bias turned out to be very limited. In particular, the
models suggested that the data after editing still contained a substantial amount of
measurement error.
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